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Chapter 1

Introduction

1.1 Definition and Scope of NLI

Natural Language Understanding (NLU) is a sub-domain of Natural Language Pro-
cessing (NLP) and Artificial Intelligence (AI) which aims at giving computers the
ability to understand and interpret human languages. In order to fulfill that goal,
a number of difficult tasks involving syntactic and semantic aspects of natural lan-
guage have been devised, such as text summarisation, sentiment analysis or relation
extraction. Among these tasks is the central problem of Natural Language Inference
(NLI), also known as Recognising Textual Entailment (RTE) (Dagan et al., 2006).

In NLI, the objective is to recognise whether a sentence p, called premise, entails
another sentence h, called hypothesis. Here, we define entailment as the relation
of information inclusion between the premise and hypothesis. That is, a sentence
p entails h if and only if all of the information given in h is also present in p. In
other words, a hypothesis is entailed by a premise if it can be inferred from it. An
example is given below:

p: Two boys are playing football in a grass field.
h: Children are playing outside.

For a human reader, recognising that p entails h in the example above is done
easily. Our brain is naturally able to determine that two boys are children, that a
grass field is outside, and that playing football is summarised by playing. However,
allowing a computer to perform the same task proves to be particularly hard. The
difficulty of NLI comes not only from the complex nature and ambiguity of natural
language, but also from the fact that the decision whether a sentence entails another
is based on human judgement and not some kind of formal logic. Indeed, in NLI
the relation linking a premise and hypothesis is usually chosen to be what someone
would decide upon reading the sentences. Hence, giving a system the ability to
detect entailment not only involves developing an understanding of the structure
and meaning of language, but also reproducing the line of thought of humans.

1
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If we consider the steps through which our brain went to recognise entailment in
the previous example, a number of complex tasks both on the syntactic and seman-
tic level can be identified. First, before the sub-parts of the two sentences can be
compared, they must be identified and matched. It is hence necessary to parse the
sentences into their subject, verb, object and complements, which implies having
some kind of knowledge of English grammar. Once this is done, the semantic rela-
tions that lie between the matched phrases then need to be recognised and composed
to make a decision about the sentence pair being observed. While entailment can
easily be inferred from some of those relations (e.g. playing football obviously entails
playing), it can also be very hard to infer from others (some advanced knowledge of
the world is necessary to be able to determine that a grass field is located outside).
Of course, the steps described above aren’t always necessary for a system to perform
well on NLI, but they illustrate the kind of challenges being faced when working on
the problem.

So far, we have only defined NLI as a binary classification task in which a choice
has to be made between entailment/no entailment based on a premise-hypothesis
pair. In most formulations of NLI problems, however, the actual objective isn’t
to distinguish between two but three different classes: entailment, contradiction
and neutral (S. Bowman et al., 2015; Conneau, Rinott, et al., 2018; Giampiccolo
et al., 2008; Marelli et al., 2014; Williams et al., 2018). This particular kind of
formulation makes the task at hand even harder, as not only information inclusion,
but also information exclusion need to be recognised.

Sentence pair Relation
p: A woman having a beverage.

h: Woman has a drink. entailment
p: Men are sitting at a table.

h: People standing near a table. contradiction
p: A man and his dog playing frisbee.
h: A man is having fun with his dog. neutral

Table 1.1: Examples of sentence pairs and their associated labels

Let’s consider the three examples of sentence pairs and their associated labels
in table 1.1. In order to properly classify them, a system must be able to identify
that beverage and drink are synonyms in the first pair, that standing and sitting
are antonyms in the second, and finally that playing frisbee doesn’t necessarily im-
ply having fun but doesn’t contradict it either. Furthermore, while the sentences
presented here do not illustrate it, premises and hypotheses in NLI tasks can some-
times contain grammatical errors and spelling mistakes, as they are usually written
by humans. This kind of errors shouldn’t prevent a system from correctly classifying
instances, which only adds to the difficulty of the problem.

In their MultiNLI paper (Williams et al., 2018), the authors argue that the
main difficulty in RTE is to extract meaningful representations for the sentences
that compose the premises and hypotheses of an NLI data set, which makes the
task particularly interesting for representation and transfer learning. They also
underline how the large variety of linguistic phenomena that must be handled by
models to recognise entailment makes it a good benchmark on NLU.

2
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1.2 Interest and Applications

Considering all the elements mentioned in the previous section, one can easily imag-
ine why natural language inference is such an important research interest in the field
of NLP. The complexity of the task and its semantic relevance make it an essential
aspect of NLU and a major problem that needs to be tackled in this area. The
interest of NLI however goes beyond academic research, and numerous applications
would benefit from the ability to perform inference on human language:

• In automatic text summarisation (Das and Martins, 2007), the objective is
to automatically produce a summary for a piece of text or a document. The
result should be short and remove any kind of redundancy from its source, but
without losing any of the important information it contains.

In such a situation, NLI can for example be used to detect if any sentence
of the summary can be inferred from the others (which would mean that it
is redundant) (Dagan et al., 2006), or to verify that the summary is well
entailed by the original text from which it was generated (to ensure that it
doesn’t include any additional or unrelated information) (Pasunuru et al.,
2017). Inference can also be used to directly address the task at hand, by
determining which sentences in the original document are entailed by other
larger chunks of text and extracting them to build a summary.

• Opinion summarisation (Condori and Pardo, 2017) is a task that has seen a
significant surge in interest over the past years, mainly due to the fast growth
of social networks and online shopping websites. The idea in opinion sum-
marisation is to analyse pieces of text written by different people on a specific
subject (such as product reviews on Amazon or political opinions on Twitter)
and to extract the general sentiments that are shared by multiple persons.

In this case, NLI can be used in a similar fashion as for automatic text sum-
marisation: a sentence or a piece of text that is entailed by multiple opinions
can be considered to summarise them well, as it contains no contradictory or
additional information.

• In reading comprehension (Hirschman et al., 1999), a system takes some doc-
ument as input and answers questions about it by searching for relevant infor-
mation in the text.

In this type of problem, NLI can be used to find the sentences in the source text
that can be inferred from the questions and use them to build answers. It can
also serve to choose the best answer between potential solutions by determining
which ones can be inferred from the questions with more confidence.

• Question answering is a task very similar to that of reading comprehension
where the objective is to answer open domain questions by using diverse
sources of information. In that situation, NLI can serve similar purposes as in
reading comprehension.

3
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1.3 Contents of this Document

Thanks to the relatively recent creation of large scale natural language inference
data sets (more on that in chapter 2) and the fast development of Neural Networks
(NNs) over the past few years, the NLU community has come up with numerous
Deep Learning (DL) models to address the problem of NLI. However, as we will see
in the next chapter, only very little work has been done on investigating the use of
lexical level information to help DL models recognise entailment.

In this work, we propose to implement a well-known model for NLI and to
augment it with lexical entailment information, in order to assess whether this helps
it on the task of recognising textual entailment.
Our implementation of the original model is first trained and tested on three famous
corpora for NLI, and its classification accuracy on them is defined as the baseline
to beat.
We then investigate multiple ways to include existing metrics designed to detect
entailment between words in the model, and we measure whether this additional
information improves its performance. The experiments we conduct show that our
model enhanced with lexical information does indeed perform better on the task of
NLI compared to our baseline (although only by a small margin), hinting at the
fact that lexical entailment can help systems to better recognise inference at the
sentence level, and opening up new avenues for research in this area.

The rest of this document is organised as follows:

• In chapter 2, we provide a complete literature review on the topics addressed
in this work. The chapter is sub-divided in two main sections that focus on
natural language inference and lexical entailment, respectively.

• In chapter 3, we describe the model we used as a baseline in this work in
detail, and we present our implementation for it with PyTorch1, a popular deep
learning framework. We also provide information about the specific parameters
we used to train the model, and we report its performance on three famous
data sets for NLI.

• In chapter 4, we present the Lexical Entailment Augmented Network (LEAN),
a model built on top of the baseline presented in chapter 3 which uses addi-
tional lexical entailment information to perform inference. Different ways of
including lexical entailment and different LE metrics are explored, and their
influence on the model’s performance is reported.

• In chapter 5, the results obtained with LEAN are compared with the baseline,
and they are analysed and discussed in depth. A small ablation analysis is also
proposed on the best performing version of LEAN to determine which aspects
of the lexical entailment information participate the most to its performance.

• Finally, chapter 6 proposes a conclusion for this work and opens up new di-
rections for further research in the area of natural language inference.

1https://pytorch.org/
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Chapter 2

Related Works

2.1 Natural Language Inference

In the first section of this chapter, we investigate previous work in the domain of NLI.
We focus in particular on models that have addressed the problem with approaches
in deep learning, and we present the specific tasks and data sets that were used to
train them.

2.1.1 NLI Tasks and Data Sets

Over the years, a number of tasks and data sets have been devised for the problem of
natural language inference. In particular, the relatively recent introduction of large
scale, high quality corpora enabled the development of many deep learning models
for NLI. In this sub-section, we describe the most prominent ones and compare
them.

2.1.1.1 The SNLI Corpus

In 2015, Bowman et al. presented the Stanford Natural Language Inference (SNLI)
corpus (S. Bowman et al., 2015), a large scale, manually generated and annotated
data set of sentence pairs labelled for textual entailment. With a total of 570,152
instances, the corpus was the first of its kind, and its impressive size sparked the
apparition of numerous deep learning models for natural language inference.

The SNLI corpus is composed of pairs of sentences called premises and hypotheses
and labelled with one of the three classes entailment, contradiction and neutral.
The data is divided into a training set containing 550,152 sentence pairs and a
development and a test set containing 10,000 pairs each. The objective in SNLI is
to correctly predict the label associated to each instance in its test set.

To build SNLI, the authors used the Amazon Mechanical Turk1 crowd-sourcing
platform. There, human workers were presented with series of premises and asked

1https://www.mturk.com/
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to write three hypotheses for each of them: one that was entailed by the premise
(labelled with entailment), one that contradicted it (labelled with contradiction),
and one that wasn’t entailed by nor contradicted it (labelled with neutral). Specific
indications were given to the workers to guide them in their task (advices on sentence
length, complexity, etc.), as well as restrictions (it was for example forbidden to reuse
the same sentence twice). Examples of sentence pairs and their associated labels are
presented in table 2.1 (taken directly from the original paper).

Premise Hypothesis Label
A soccer game with multiple
males playing.

Some men are playing a
sport.

entailment

A man inspects the uniform
of a figure in some East Asian
country.

The man is sleeping contradiction

An older and younger man
smiling.

Two men are smiling and
laughing at the cats playing
on the floor.

neutral

Table 2.1: Examples of instances from the SNLI corpus (S. Bowman et al., 2015)

For the premises of SNLI, the authors extracted captions from the Flickr30k cor-
pus (Young et al., 2014), a crowd-sourced data set composed of image descriptions.
The motivation for using captions was that it helped solve the problem of event and
entity co-reference in sentence pairs.
Event/entity co-reference refers to the situation were the premise and hypothesis in
a pair mention some entity or event, but it cannot be trivially determined whether
they are the same or not. In the SNLI paper (S. Bowman et al., 2015), the example
of the sentences ”A boat sank in the Pacific ocean” and ”A boat sank in the Atlantic
ocean” is given. In that situation, it is not clear whether it should be considered
that the event being referred to is the same or not. If it is, the label associated to the
pair should be contradiction, as the location of the boat in the hypothesis is different
from the one in the premise. However, if the events are considered to be different,
the associated label should be neutral, because the sentences don’t contradict each
other since they refer to different boats and accidents.
Using captions helped solve this problem, as all events or entities in the premises be-
longed to some image on which the hypotheses written by the workers were supposed
to be based too. This meant that events and entities mentioned in the hypotheses
could always be assumed to be the same as those in the premises when labelling
pairs.

Once data collection was complete, an additional validation round was applied
on about 10% of the corpus. Instances from the data set were presented to the
workers without their associated class, and they were asked to label them. Four
different persons validated each pair, and a majority vote was used to determine
the gold label. Sentence pairs for which no agreement was reached were kept in the
corpus but labelled with ”-”, to indicate that no gold label could be selected. The
rate of agreement during this phase was of 98%, with unanimity obtained in about
58% of cases.

Aside from the corpus described above, Bowman et al. also proposed several

6
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models trained and tested on the data in their paper. The two best performing ones
were a lexicalised classifier and a simple Long Short Term Memory (LSTM) neural
network. These were defined as the baselines to beat when the paper was published.
Additionally, the LSTM was tested on the SICK corpus (an older, smaller scale NLI
data set) with transfer learning. The authors first trained the model on SNLI and
then fine-tuned it on SICK’s training set. With this approach, they obtained new
state-of-the-art results, which showed the potential of the SNLI data set for training
efficient deep learning models on the task of recognising entailment.

It is generally accepted that the manual construction and annotation of the SNLI
corpus by human workers make it a high quality resource. Its large size also allows it
to be particularly appropriate for uses in modern deep learning approaches to NLI.
However, the corpus has its limitations. Williams et al. (2018) explain in their
MultiNLI paper that because all sentences in SNLI were built on a single type of
textual resource (namely image captions), they do not allow for good generalisation
on other kinds of texts and lack certain important linguistic phenomena (such as
temporal reasoning or modality, among other examples). These were some of the
reasons for the creation of the MultiNLI corpus.

2.1.1.2 The MultiNLI Corpus

The Multi-Genre Natural Language Inference (MultiNLI) corpus (Williams et al.,
2018) was created at the University of New York in 2017 to remedy the shortfalls
of SNLI. It consists in 432,702 pairs of sentences labelled for textual entailment and
covers a wide range of textual styles and topics. The data is split in a training
and development set that are available online2, as well as test sets that can only be
accessed through Kaggle competitions in unlabelled form34.

MultiNLI is very similar to SNLI both in its structure and in the way it was
constructed: the sentence pairs that compose it were produced through a crowd-
sourcing effort that followed the same protocol, and they have the same form.

The main difference between the two corpora is the type of textual resources that
were used to produce their premises. Compared to SNLI, many more types of text
were used for MultiNLI. More specifically, the authors extracted premises from ten
different types of sources written in English. Nine of them were part of the Open
American National Corpus (OANC), which contains transcriptions of real world
conversations, reports, speeches, letters, non-fiction works, articles from magazines,
travel guides and short posts on linguistics for non-specialists. The tenth genre of
text used in MultiNLI was fiction and contained a compilation of open access works
written between 1912 and 2010, covering different styles such as science-fiction,
mystery or adventure.

One of the problems that MultiNLI’s authors identified in SNLI was that it was
”not sufficiently demanding to serve as an effective benchmark for NLU” (Williams
et al., 2018). Hence, in order to make MultiNLI more difficult, they split its data such

2https://www.nyu.edu/projects/bowman/multinli/
3https://www.kaggle.com/c/multinli-matched-open-evaluation
4https://www.kaggle.com/c/multinli-mismatched-open-evaluation
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that only five genres of text were covered in its training set, and its testing set was
divided in two categories: a matched set only containing premises extracted from the
same genres as the training set, and a more challenging mismatched set containing
premises from all ten genres selected during data collection. The insight was that
the matched set would allow to ”explicitly evaluate models [...] on the quality of
their sentence representations within the training domain”, whereas the mismatched
version would allow to test ”their ability to derive reasonable representations in
unfamiliar domains” (Williams et al., 2018).

To verify that their corpus did indeed improve the difficulty compared to SNLI,
the authors of MultiNLI trained and tested several baselines on it, as well as the then
state of the art ESIM model (Chen, Zhu, Ling, Wei, et al., 2017a). They wrote their
own implementation of ESIM and tested it on SNLI, which yielded 86.7% accuracy
(meaning that the model correctly classified 86.7% of the instances it saw in SNLI’s
test set). On MultiNLI, their implementation only performed at 72.4% accuracy
on the matched set and 71.9% on the mismatched version, effectively proving that
their new corpus represented a greater challenge than SNLI for natural language
inference.

Table 2.2 below presents some examples of sentence pairs extracted from the
MultiNLI corpus (taken from the data set’s official website5).

Text type Premise Hypothesis Label
Letters Your gift is appreciated

by each and every stu-
dent who will benefit
from your generosity.

Hundreds of students will
benefit from your gen-
erosity.

neutral

Telephone yes now you know if if
everybody like in August
when everybody’s on va-
cation or something we
can dress a little more ca-
sual or

August is a black out
month for vacations in
the company.

contradiction

9/11 report At the other end of Penn-
sylvania Avenue, people
began to line up for a
White House tour.

People formed a line at
the end of Pennsylvania
Avenue.

entailment

Table 2.2: Examples of instances from the MultiNLI corpus (Williams et al., 2018)

While MultiNLI is now widely accepted as the de facto standard for training and
evaluating NLI models, the corpus is not devoid of flaws. In particular, two papers
published in 2018 (Gururangan et al., 2018; Poliak et al., 2018) showed that it was
possible to predict the labels associated to sentence pairs in SNLI and MultiNLI
with relatively high accuracy by solely looking at the hypotheses. The explanation
given by the two works to explain this phenomenon was that the corpora suffered
from annotation artifacts, such as specific sentence lengths or choices of words by
the annotators for given classes.

5https://www.nyu.edu/projects/bowman/multinli/
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2.1.1.3 The Breaking NLI Data Set

In 2018, Glockner et al. proposed a new benchmark to evaluate whether the mod-
els trained to perform NLI were efficient at solving problems that involve lexical
inferences and world knowledge. The corpus, named the Breaking NLI data set
(Glockner et al., 2018), consists only in a test set of 8,193 sentence pairs and is
meant to be used to evaluate models previously trained on SNLI.

To build their data set, Glockner et al. extracted premises from SNLI’s training
set and applied automatic transformations on them to produce hypotheses where
only a single word has been replaced. Replacement words were chosen to generate
hypotheses that were either entailed by the selected premises or contradicted them
(though neutral examples were also obtained in some cases as a by-product).
After the sentence pairs and their associated label were obtained with the auto-
matic procedure, they were further validated by human annotators through a crowd-
sourced effort, to ensure their correctness. Examples of pairs and their labels are
provided in table 2.3 (directly taken from the paper).

Premise Hypothesis Label
The man is holding a saxo-
phone

The man is holding an elec-
tric guitar

contradiction

A little girl is very sad A little girl is very unhappy entailment
A couple drinking wine A couple drinking champagne neutral

Table 2.3: Examples of instances from the Breaking NLI data set (Glockner et al.,
2018)

Once they had completed data collection and validation, the authors evaluated a
number of models that performed well on SNLI and MultiNLI on their own test set.
All models performed significantly worse on their data, except for one: KIM (Chen,
Zhu, Ling, Inkpen, et al., 2018), which makes use of external lexical information to
perform classification.

The results show that most models trained on the current best corpora for NLI
have poorer generalisation capability than was previously thought, and that further
improvements in the NLI task definition would be necessary to alleviate this problem.

2.1.1.4 Other Resources

In addition to the data sets mentioned in this sub-section, other resources exist for
the task of recognising textual entailment. These won’t be discussed in depth here,
as we consider them of somewhat lesser relevance in the specific context of deep
learning for NLI. Nevertheless, we list them below for the sake of completeness:

• The Recognising Textual Entailment (RTE) challenge benchmark (Dagan et
al., 2006) was probably one of the first data sets to ever propose a unified task
on which to evaluate NLI models. Presented during a workshop on textual
entailment in 2005, the corpus is composed of sentence pairs produced by
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human annotators and labelled with entailment/no entailment. It is split in a
training and a test set containing 567 and 800 instances, respectively.

After the first edition in 2005, subsequent versions of RTE were proposed from
2006 to 2011 (RTE-2 to RTE-7), all with sizes similar to the first instance.
Starting from 2008 (RTE-4), the challenge moved from a binary classification
setup to a three class problem (entailment/contradiction/unknown).

Even though the manual definition of the RTE data sets makes them high
quality resources, their limited size prevents them from being of any use in
the training of models that need to learn representations on large quantities
of data, such as deep neural networks.

• The Sentences Involving Compositional Knowledge (SICK) data set (Marelli
et al., 2014) was presented during a workshop on semantic evaluation in 2014
as a benchmark for the evaluation of Compositional Distributional Seman-
tic Models (CDSMs). The corpus consists in 10,000 sentence pairs labelled
with a score on a 5-point scale for semantic relatedness and with entail-
ment/contradiction/neutral for textual entailment.

To generate the pairs, image captions from the 8K ImageFlickr6 and SemEval
2012 STS MSRVideo Description data sets were used as premises, and au-
tomatic transformations were applied on them to produce hypotheses. The
results were then manually labelled by human annotators and a majority vote
was used to validate the procedure.

Although SICK is larger than the RTE data sets by an order of magnitude,
its size is still to small to be used efficiently in the training of deep learning
models. In their SNLI paper, Bowman et al. also denote how the automatic
aspect of the sentence pairs generation in SICK introduced ”some spurious
patterns into the data” (S. Bowman et al., 2015).

• The denotation graph (Young et al., 2014) consists in a large hierarchical set
of sentences connected to each other through the relation of entailment.
As with the SICK data set, Bowman et al. explain in their SNLI paper that
the automatic generation of the denotation graph makes it too noisy to be
usable in the training of data intensive models (S. Bowman et al., 2015).

• The Cross-lingual Natural Language Inference (XNLI) corpus (Conneau, Rinott,
et al., 2018) is a data set that extends the development and test sets of the
MultiNLI corpus with 7,500 human-annotated pairs of sentences in 15 different
languages.

While the pairs follow the exact same structure as those in the SNLI and
MultiNLI data sets, the primary focus of the XNLI corpus is not on recognis-
ing textual entailment, but rather on providing a strong benchmark for the
evaluation of systems on the task of cross-lingual natural language understand-
ing.

6http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
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2.1.2 Deep Learning Models for NLI

Since the release of the SNLI corpus in 2015, a wide array of deep learning models
have been devised for the task of natural language inference. Those models can
roughly be regrouped into three main categories: sentence vector-based models,
sentence matching models and transfer learning approaches.

2.1.2.1 Sentence Vector-based Models

As mentioned in the MultiNLI paper (Williams et al., 2018), the wide variety of
linguistic phenomena covered by natural language inference not only makes it a
good benchmark for NLU, but also an excellent supervised task for the learning of
sentence embeddings, vector representations that capture the semantics of sentences.
For this reason, there exist a large number of models focused on learning general
sentence representations from NLI in the literature. These models are often referred
to as sentence vector-based.

The general architecture of sentence vector-based models consists in two main
components: a sentence encoder (or sentence model) and a classifier (or matching
layer). The task of the sentence encoder is to learn generic representations for the
premises and hypotheses in some NLI problem, and the classifier then has to some-
how combine these representations to predict the relationship that exists between
the two sentences. This structure is often referred to as the Siamese architecture
(Bromley et al., 1994), represented in figure 2.1. Note that the two sentence en-
coders in the image share the same weights (the same network is applied on both
the premise and hypothesis).

Figure 2.1: Representation of the Siamese architecture for NLI

Most sentence vector-based model use the same type of classifier to perform
predictions on NLI. The architecture of such a classifier, represented in figure 2.2,
was first introduced in a paper by Mou et al. (2015) and has since often been reused
almost as is in many other sentence vector-based models. In the figure, h1 and h2
are vector representations learned by a model’s sentence encoder for the premise and
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hypothesis in some NLI task. These vector representations, as well as the element-
wise product and difference between them, are concatenated into a single vector
m, which is then passed through a Multi-Layer Perceptron (MLP). To associate a
probability to each possible class in the NLI task, a softmax function is applied on
the output of the MLP.

Figure 2.2: Classifier architecture in sentence vector-based models

Since the classifier in all sentence vector-based models is virtually the same (with
only hyper-parameters such as layers size varying), the main difference between these
models lies in the way they learn representations for the premises and hypotheses
in RTE problems. Approaches to sentence encoding can be subdivided into three
principal categories: sequential, tree-based and self attention-based.

Sequential sentence encoders are models that use Recurrent Neural Networks
(RNNs) to learn representations for sentences. Examples of such approaches can be
found in Conneau, Kiela, et al. (2017), where the authors investigate several archi-
tectures involving RNNs for sentence encoding. In particular, they propose in a first
approach to encode sentences by passing the word embeddings that compose them
through a unidirectional, single-layer GRU or LSTM network and taking the final
state of the RNN as representation. In a second proposition, a bidirectional LSTM
(bi-LSTM) is used, and max or average pooling is applied over each dimension of
the network’s hidden states to extract a fixed-length vector for a sentence.
In subsequent works (Nie and Bansal, 2017; Talman et al., 2018), more complex
architectures using stacked bi-LSTMs with shortcut connections and max pooling
over the output are used to encode sentences. The general structure of these stacked
encoders is illustrated in figure 2.3 (with only minor differences between the imple-
mentations proposed in the two cited papers).
Table 2.4 summarises the reported accuracies of sequential encoders on SNLI and
MultiNLI’s test sets.

Model SNLI MultiNLI-m MultiNLI-mm
LSTM (Conneau, Kiela, et al., 2017) 80.7 - -
GRU (Conneau, Kiela, et al., 2017) 81.8 - -
Bi-LSTM avg. (Conneau, Kiela, et al., 2017) 78.2 - -
Bi-LSTM max. (Conneau, Kiela, et al., 2017) 84.5 - -
Shortcut-stacked encoder (Nie and Bansal, 2017) 86.1 74.6 73.6
HBMP (Talman et al., 2018) 86.6 73.7 73.0

Table 2.4: Reported accuracy (%) of sequential sentence encoders on SNLI and
MultiNLI’s matched (MultiNLI-m) and mismatched (MultiNLI-mm) test sets
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Figure 2.3: k-layers stacked bi-LSTMs with shortcut connections for sentence en-
coding

In tree-based encoders, the parse structure of sentences is used to learn represen-
tations for them. This way, syntactic information is directly taken into account by
encoders while modelling the premises and hypotheses of NLI tasks.
In the Tree-based Convolutional Neural Network (TBCNN) (Mou et al., 2015), a
Convolutional Neural Network (CNN) is applied over the dependency parse tree of
a sentence to learn a representation for it. More specifically, Mou et al. propose
in their paper to slide a set of two-layers sub-tree feature detectors over the parse
tree of a sentence to learn feature maps for each word in it. The feature detectors
are convolution filters specialised to capture information about specific grammatical
relations between words and applied on every sub-tree in the dependency parse tree
of a sentence. Once the detectors have been applied, the resulting feature maps are
combined together by applying a max pooling operation over each of their dimen-
sions and then passing the result through some feed-forward neural network. This
produces a fixed-length vector that can be used in the final classification layer of the
model.

Aside from CNNs, other types of networks can be applied on the parse structure
of sentences to encode them. This is the case of Tree-structured Recursive Neural
Networks (TreeRNNs), a special type of RNNs that work on binary parse trees and
propagate information upstream along them, directly including syntactic informa-
tion in the process of sentence encoding.
In a work by S. R. Bowman et al. (2016), the Stack-augmented Parser-Interpreter
Neural Network (SPINN) is presented. Inspired by shift-reduce parsing, SPINN is a
TreeRNN capable of both building the binary parse tree of a sentence and processing
it in a single left-to-right pass over its tokens.
The same is true of the model proposed by Choi et al. (2017), which introduces a
new kind of TreeRNN called Gumbel Tree-LSTM to learn the parse structure of a
sentence as it is being read.

13
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This capability of the two models to parse sentences as they learn their representa-
tions makes them particularly fast, because they only need one pass over a sentence
to encode it, and they can work on batches of sentences instead of single sequences
at a time (which is a big limitation of other TreeRNNs).
Table 2.5 summarises the reported classification accuracies of tree-based sentence
encoders on SNLI’s test set (no results are available on MultiNLI for those models).

Model Accuracy (%)
TBCNN (Mou et al., 2015) 82.1
SPINN (S. R. Bowman et al., 2016) 83.2
Gumbel Tree-LSTM (Choi et al., 2017) 86.0

Table 2.5: Reported accuracy of tree-based sentence encoders on SNLI’s test set

In self attention-based encoders, a special attention mechanism is used to build
representations for sentences. As explained by Shen, Zhou, Long, Jiang, S. Pan,
et al. (2017), attention is used to compute an alignment score between the elements
of a sequence x = [x1, x2, ..., xn] and some query q. More specifically, an attention
function a(xi, q) computes the degree of similarity or dependency between each
xi ∈ x and q. A softmax function is then applied on the resulting scores to produce
a probability distribution describing how likely each element xi is to contribute to
the information in the query.
Typically, the attention scores computed for a sequence x are used in some weighted
operation involving the xi ∈ x (such as a sum) to build a summary of the relationship
between x and q. In the specific case of sentence encoding, this idea is applied on
the words of a sentence to learn a general representation for it (which can be seen as
summarising the sentence’s meaning). The name self attention (or inner attention)
comes from the fact that attention is computed on the same sentence that is being
encoded, as opposed to other situations in NLP where the mechanism is used on
pairs of sentences to extract the dependencies between their elements.

There are multiple ways of using self attention to encode sentences’ meanings in
vector representations. Y. Liu et al. (2016) first pass the n word embeddings ei of a
sentence s through a bi-LSTM, which produces hidden states hi, i ∈ [1, .., n]. They
then apply average pooling on the hi and use a feed-forward network to compute
the attention between the resulting vector and the hidden states of the bi-LSTM.
This produces weights αi that are used in a weighted sum of the hi to get a vector
representation m for the sentence s. The architecture is illustrated in figure 2.4.
If we map Liu et al.’s attention mechanism to the one described in the previous
paragraph, we see that the result of average pooling corresponds to the query vector
q, the bi-LSTM’s hidden states to the xi, and the feed-forward network to the
attention function a(xi, q).
Conneau, Kiela, et al. (2017) and Lin et al. (2017) inspire themselves from the
attention mechanism described in the work by Liu et al., but they propose to use
multiple attentions computed between the bi-LSTM’s hidden states and learned
query vectors, instead of a single attention with the result of average pooling as
query. To force the attentions to focus on different parts of a sentence, a special
penalisation term is used.

Shen, Zhou, Long, Jiang, S. Pan, et al. (2017) further develop the idea of self
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Figure 2.4: Inner attention mechanism (Y. Liu et al., 2016)

attention in their Directional Self Attention Network (DiSAN), which introduces
the concept of multi-dimensional self attention (a form of attention where weights
are computed for each dimension of a vector, instead of producing scalar attention
scores). In a later publication, Shen, Zhou, Long, Jiang, Sen Wang, et al. (2018)
present the Reinforced Self Attention Network (ReSAN), an improved DiSAN model
that combines hard and soft attention mechanisms (Bahdanau et al., 2014; Xu et al.,
2015) to learn representations for sentences.
In a paper by Chen, Zhu, Ling, Wei, et al. (2017b), a model using gated attention (a
form of attention using the bi-LSTM’s gates in its computation) is proposed. Chen,
Ling, et al. (2018) present another approach making use of several forms of multi-
dimensional self attention with generalised pooling. In other works, Munkhdalai and
Yu (2017) propose a new neural architecture based on memory and self attention
for sentence encoding, and Yoon et al. (2018) apply self attention on top of a CNN
in their Dynamic Self Attention (DSA) network to learn representations. Finally,
Im and Cho (2017) use the Transformer architecture (Vaswani et al., 2017) and a
form of attention sensitive to the distance between words in their Distance-based
Self Attention Network.

Table 2.6 summarises the reported accuracies of self attention-based models on
the SNLI and MultiNLI test sets.

Model SNLI MultiNLI-m MultiNLI-mm
Inner attention (Y. Liu et al., 2016) 83.3 - -
Neural Semantic Encoder (Munkhdalai and Yu, 2017) 84.6 - -
Structured Self Attentive Network (Lin et al., 2017) 84.4 - -
Inner attention (Conneau, Kiela, et al., 2017) 82.5 - -
Gated attention bi-LSTM (Chen, Zhu, Ling, Wei, et al., 2017b) 85.5 72.8 73.6
DiSAN (Shen, Zhou, Long, Jiang, S. Pan, et al., 2017) 85.6 71.0 71.4
Distance-based Self Attention Network (Im and Cho, 2017) 86.3 74.1 72.9
ReSAN (Shen, Zhou, Long, Jiang, Sen Wang, et al., 2018) 86.3 - -
bi-LSTM generalised pooling (Chen, Ling, et al., 2018) 86.6 73.8 74.0
DSA (Yoon et al., 2018) 87.4 - -

Table 2.6: Reported accuracy (%) of self attention-based sentence encoders on SNLI
and MultiNLI’s matched (MultiNLI-m) and mismatched (MultiNLI-mm) test sets
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2.1.2.2 Sentence Matching Models

Natural language inference is a task that involves comparing pairs of sentences to
predict the relation linking them. This means that interactions between premises
and hypotheses play an essential role in the decision whether they entail each other
or not. However, because the goal of sentence vector-based models is to learn rep-
resentations for single sentences that can be used in downstream tasks, they do not
capture any information about interactions between sentence pairs to recognise en-
tailment.
Sentence matching models, on the contrary, do exactly that. While this makes them
less applicable in transfer learning, it gives them a clear advantage on recognising
textual entailment, as is reflected by their classification accuracy on NLI tasks.

There are multiple ways of modelling interactions between sentences, but almost
all of them involve attention mechanisms similar to the one described in the previous
sub-section.

In the paper ”Reasoning about Entailment with Neural Attention” (Rocktäschel
et al., 2016), the authors use two LSTMs with word-by-word attention to learn
representations for the interactions between premises and hypotheses in NLI.
The architecture of the model is illustrated in figure 2.5. In the image, the epi , i ∈
[1, ..., l] and ehj , j ∈ [1, ...,m] are word embeddings for the premise and hypothesis,
respectively, LSTMp and LSTMh two LSTMs to encode them, and hpi and hhj the
hidden states of LSTMp and LSTMh. The model uses a feed-forward network to
compute attention between each hhj (the encoded words of the hypothesis) and all
the hpi (the encoded words of the premise) to produce attention weights αij. For each
hhj , an attention vector rj is then obtained by computing a weighted sum aj of the

attended hpi with the αij (aj =
∑l

i=1 αijh
p
i ) and merging it with rj−1, the attention

vector computed for the previous word in the hypothesis (rj = aj + tanh(W rrj−1),
W r is a learnable parameter). Finally, the last attention vector rm is taken as
a representation of all the interactions between the premise and hypothesis and
merged with the last hidden state hhm of LSTMh. The result is passed through
a classification layer with softmax activation to predict the label associated to the
pair.

Subsequent works inspire themselves from the proposition by Rocktäschel et al.
to build their own LSTMs with word-by-word attention for NLI.
Shuohang Wang and Jiang (2016) reuse the same architecture, but they pass each
hhj and aj through an additional layer they call match-LSTM (mLSTM) to merge
their representations. They then use the last hidden state of the mLSTM for clas-
sification.
Sha et al. (2016) first encode the premise with a regular LSTM network and concate-
nate its hidden states in a matrix P . Then, they pass P and the word embeddings
of the hypothesis through a special LSTM called re-read LSTM (rLSTM), which
combines the encoded words of the hypothesis with a weighted sum of the vectors
in P . The weights of the sum are computed with attention. They apply average
pooling on the outputs of the rLSTM and use the result for classification.
P. Liu et al. (2016) propose something slightly different with their coupled-LSTMs
(c-LSTMs), two inter-dependent LSTMs that encode the premise and hypothesis

16



Chapter 2. Related Works Aurélien Coet

Figure 2.5: Word-by-word attention mechanism (Rocktäschel et al., 2016)

in a pair by using both their own previous hidden states and the ones from the
other LSTM at different time steps to produce outputs. The authors stack multiple
coupled-LSTM on top of each other to get their best performance on NLI with this
approach.

The attend-compare-aggregate model proposed by Parikh et al. (2016) applies
neural attention directly on the word embeddings of a sentence pair to perform
classification. First, it uses a feed-forward network to compute attention scores
between each word embedding in the premise, denoted epi , i ∈ [1, .., l], and those in
the hypothesis, denoted ehj , j ∈ [1, ..,m]. A softmax function is applied on the result,
which produces attention weights αij that are used to compute, for each word epi in
the premise, a weighted sum of the words in the hypothesis ai =

∑m
j=1 αije

h
j , and

the inverse for each word ehj in the hypothesis, bj =
∑l

i=1 αije
p
i . Then, each pair

(epi , ai) and (ehj , bj) is concatenated and passed through a feed-forward network G to
produce comparison vectors vpi = G([epi ; ai]) and vhj = G([ehj ; bj]). Finally, the vpi and

vhj are aggregated by summing them, vp =
∑l

i=1 v
p
i , vh =

∑m
j=1 v

h
j , and the results

are concatenated and passed through a final feed-forward network for classification,
ŷ = F ([vp; vh]). The complete architecture of the model is illustrated in figure 2.6.

After the publication by Parikh et al. in 2016, the idea of computing attention
both from the premise to the hypothesis and from the hypothesis to the premise
was reused in numerous other sentence matching models.
Chen, Zhu, Ling, Wei, et al. (2017a) introduce the Enhanced Sequential Inference
Model (ESIM), a neural network that uses bi-LSTMs to encode premises and hy-
potheses and bidirectional attention to model interactions between them. At the
time of its publication and for a while after it, ESIM remained state-of-the-art on
the SNLI corpus. It was also the best performing model on MultiNLI when the data
set was initially released. These are some of the reasons why it was chosen as a
baseline in this work. More details on the model’s architecture and performance are
given in chapter 3.
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Figure 2.6: Attend-compare-aggregate architecture (Parikh et al., 2016)

Similar to ESIM, the Bilateral Multi-Perspective Matching (BiMPM) network
(Z. Wang et al., 2017) is composed of a first bi-LSTM to encode premises and
hypotheses in NLI pairs, a bidirectional attention layer, a second bi-LSTM to com-
pose attention information and a final classification layer. Differences between the
BiMPM and ESIM mostly lie in the way attention is computed and composed, but
overall the architectures of the two are very close.
In another work, Tay et al. (2018) introduce the Comprop Alignment-Factorised
Encoders (CAFE). The model also has an architecture similar to ESIM, but it com-
poses attention information differently, with an alignment factorisation layer.
The Dependant Reading Bidirectional LSTM (DR-BiLSTM) model from Ghaeini
et al. (2018) is yet another neural network which works in the same way as ESIM,
with the exception that it uses special inter-dependant bi-LSTMs for the encoding
of the premise and hypothesis instead of regular ones.
Finally, the Densely-connected Recurrent and Co-attentive neural Network (DRCN)
(Kim et al., 2018) adopts an architecture comparable to ESIM’s, but it stacks multi-
ple RNNs and attention layers on top of each other. Auto-ecoders are used between
stacked layers to reduce the representations dimensionality (since it grows with the
number of layers). Figure 2.7, taken from the original paper, illustrates the con-
cepts of the model. The top-right part of the image shows the specific number and
disposition of layers used by the authors in the publication.

In the Densely Interactive Inference Network (DIIN) (Gong et al., 2018), the
authors use a highway network (Srivastava et al., 2015) followed by a self attention
mechanism to encode the premise and hypothesis of a sentence pair. A form of
multi-dimensional attention is computed between the representations obtained with
highway networks, producing a 3-dimensional attention matrix. A convolutional
feature extractor is then applied on it to retrieve information about interactions
between the sentences, and the result is flattened and passed through a MLP with
softmax to predict the class associated to the pair of inputs.
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Figure 2.7: DRCN architecture (Kim et al., 2018)

Only very few papers investigate the use of external knowledge for NLI. All of
them propose to use sentence matching models with the inclusion of some outside
information to improve their performance on recognising entailment.
Chen, Zhu, Ling, Inkpen, et al. (2018) introduce the Knowledge-based Inference
Model (KIM). The model follows the general architecture of ESIM, but informa-
tion about the lexical relations between words in the premise and hypothesis is
additionally used to improve the model’s performance. In particular, lexical rela-
tions between words such as synonymy, hypernymy or antonymy are extracted from
Wordnet (Miller, 1995) and used in the attention layer.
In another paper (Zhang et al., 2018), the authors propose to use Semantic Role
Labelling (SRL), a task where the objective is to predict the predicate-argument
relations in a sentence, to improve an existing model on NLI. The authors apply
SRL on premises and hypotheses to learn the semantic roles for the words they con-
tain, and the results are used as additional information in the ESIM model, which
improves its performance.

Table 2.7 summarises the reported accuracies of sentence matching models on
SNLI and MultiNLI’s test sets.

Model SNLI MultiNLI-m MultiNLI-mm
Word-by-word attention (Rocktäschel et al., 2016) 83.5 - -
Match-LSTM (Shuohang Wang and Jiang, 2016) 86.1 - -
rLSTM (Sha et al., 2016) 87.5 - -
Stacked TC-LSTMs (P. Liu et al., 2016)) 85.1 - -
Attend-Compare-Aggregate (Parikh et al., 2016) 86.3 - -
ESIM (Chen, Zhu, Ling, Wei, et al., 2017a) 88.0 76.8 75.8
ESIM + Tree-LSTM (Chen, Zhu, Ling, Wei, et al., 2017a) 88.6 - -
BiMPM (Z. Wang et al., 2017) 87.5 - -
CAFE (Tay et al., 2018) 88.5 78.7 77.9
DR-BiLSTM (Ghaeini et al., 2018) 88.9 - -
DRCN (Kim et al., 2018) 88.9 80.6 79.5
DIIN (Gong et al., 2018) 88.0 80.0 78.7
KIM (Chen, Zhu, Ling, Inkpen, et al., 2018) 88.6 77.2 76.4
SRL (Zhang et al., 2018) 89.1 - -

Table 2.7: Reported accuracy (%) of sentence matching models on SNLI and
MultiNLI’s matched (MultiNLI-m) and mismatched (MultiNLI-mm) test sets
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Aurélien Coet Chapter 2. Related Works

2.1.2.3 Transfer Learning Approaches

In transfer learning, models that were first trained on some task are reused and
fine-tuned to perform other tasks. The approach is often used in situations where
resources are very scarce for a given problem, but there are large amounts of training
data available for some other, related task. In those cases, a model is first trained on
the objective where lots of data are available, and its parameters are then fine-tuned
for the problem with fewer resources.

Over the past years, there have been numerous examples of successful appli-
cations of transfer learning to deep learning models. While earlier examples have
mostly been in computer vision (thanks to the release of the huge ImageNet data
set (Russakovsky et al., 2015)), more recent applications to NLP tasks have also
shown to provide impressive performance gains.

In NLP, almost unlimited resources are available in the form of unlabelled, free
text. This data can be used in the unsupervised training of deep learning models
to capture information about the general form and structure of language. Models
trained in this manner can then be later fine-tuned for more specific tasks requiring
human annotated resources, which are much more difficult to produce and hence
much scarcer.

In the specific case of NLI, although reasonably large quantities of data are
available for training, the application of transfer learning has allowed models to
reach significantly higher classification accuracy than the previous state-of-the-art
on famous data sets like SNLI or MultiNLI. These results show that pre-training
models on unsupervised tasks to allow them to better model language seems to also
make them more efficient on natural language understanding.

There also exist cases where transfer learning is used between natural language
inference and other supervised tasks. In those situations, performance improve-
ments show that information about linguistic phenomena captured in other tasks
and overlooked by NLI can help models recognise entailment with more accuracy.

Transfer Learning from Supervised Tasks

Approaches where transfer learning is applied between some supervised task and
NLI include the models proposed by McCann et al. (2017) and B. Pan et al. (2018).

McCann et al. (2017) propose to apply transfer learning between Machine Trans-
lation (MT) and other NLP problems by learning special Context Vectors (CoVe)
that can be reused in downstream tasks. The general idea of the model, illustrated
in figure 2.8 (taken directly from McCann et al.’s paper), is to first train the sentence
encoder of a MT task to learn context sensitive representations for words so they
can be translated accurately, and then reuse it in other downstream tasks to encode
input words.
The insight behind this approach is that, in many NLP problems, models need
representations for words that are specific to the contexts in which they appear to
perform well. ”Traditional” word embedding methods, however, only produce single
vectors for words that are context-independent.
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In machine translation, it is only after word embeddings are passed through a
model’s encoder that their representations become context specific. Because MT
is a problem where large quantities of parallel data are available for training, it also
happens to be well adapted for transfer learning. This justified the use of a pre-
trained MT encoder to contextualise words in dowstream tasks.
For the particular problem of natural language inference, McCann et al. show in
their paper that using CoVe improves the accuracy of the model they train on the
SNLI corpus.

Figure 2.8: Transfer learning in CoVe (McCann et al., 2017)

In the Discourse Marker Augmented Network (DMAN) (B. Pan et al., 2018), the
authors propose to apply transfer learning between the supervised task of Discourse
Marker Prediction (DMP) and NLI.
In DMP, the objective is to predict the discourse marker which connects the two
halves S1 and S2 of a sentence S. Discourse markers are words that carry informa-
tion about the relation between parts of a sentence, such as ”and”, ”or” or ”but”.
The authors of DMAN underline in their paper how these words ”intuitively corre-
spond to the intent of NLI, such as ’but’ to contradiction, ’so’ to entailment, etc.”
(B. Pan et al., 2018), which is why they choose to transfer knowledge from DMP
to RTE. To do so, they first train a sentence encoder on a DMP task, and then
integrate it in a model specifically designed to recognise entailment. The sentence
encoder’s parameters are fine-tuned during training on the NLI task. With this
approach, new state-of-the-art results were obtained at the time of publication.

Transfer Learning from Unsupervised Tasks

Language modelling is a common task in NLP where systems called Language
Models (LMs) are trained to learn about the structure of language in an unsupervised
manner. Usually, the objective for LMs is to predict the probability of the next word
in a sentence given the previous ones. Formally, if s = [w1, w2, ..., wn] is a sentence
of n words wi, the goal of a language model is to predict P (wi|w1, ..., wi−1),∀i ∈
[1, ..., n]. Modern LMs learn to predict such probabilities statistically on large cor-
pora of unlabelled data, and the current state-of-the-art is obtained with deep neural
networks. It is generally accepted that, with sufficient amounts of data available for
training, LMs are able to learn good representations for language. Since unsu-
pervised text exists in almost unlimited quantities, this makes language modelling
particularly appropriate for transfer learning.

In the paper ”Deep Contextualised Word Representations”, Peters et al. (2018)
propose to use transfer learning to contextualise word vectors in NLP tasks. Their
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approach to transfer knowledge from one task to the other is similar to McCann et
al.’s with CoVe: an encoder is first trained on some particular task to contextualise
word embeddings, and it is then integrated in other models to encode their input
words. However, the task used by Peters et al. for pre-training is very different
from the one in CoVe. In their Embeddings from Language Models (ELMo), Peters
et al. first train a deep bidirectional Language Model (biLM) on some unsupervised
language modelling task and then use a linear combination of the biLM’s internal
states to represent input words in downstream tasks.
ELMo’s authors show that using a combination of the biLM’s internal states pro-
duces richer word representations than simply taking the network’s output, for ex-
ample, because different layers of a biLM capture different levels of information
about language (lower layers are often more focused on structure and syntax, while
layers at the top usually learn about meaning).
When they integrate ELMo in existing models for various NLP tasks, and in par-
ticular the well-known ESIM for NLI, Peters et al. report increases in classification
accuracy, justifying their approach.

In the paper ”Improving Language Understanding by Generative Pre-Training”,
Radford et al. (2018) present the Generative Pre-training Transformer (GPT), a
language model based on the transformer architecture (Vaswani et al., 2017).
In order to apply transfer learning, the GPT is first trained on a language modelling
objective with unlabelled data, and it is later fine-tuned for various natural language
understanding tasks. Figure 2.9 (taken from the GPT paper) illustrates a high-
level view of the model’s architecture on the left, as well as a representation of the
way the inputs for different tasks are modified to fine-tune GPT on the right. In
the particular case of entailment, the premise and hypothesis of a NLI task are
concatenated into a single sequence (separated by special delimiters), the result is
passed through the transformer language model, and the model’s final output is used
as input in a linear classification layer. With this approach, Radford et al. manage
to obtain new state-of-the-art result at the time of publication.

Figure 2.9: Architecture of the GPT and transfer to other tasks (Radford et al.,
2018)

Devlin et al. (2018) make the observation that because Radford et al.’s GPT
uses a regular language modelling objective during pre-training, the representations
it learns are not bidirectional, which limits their representational power. Indeed,
because the ”traditional” objective of a language model is to predict the next word
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in a sentence based on the ones it’s already seen, truly bidirectional models cannot
be used for this task, as they have already seen the next word in a sentence at
any time step, which makes predictions trivial and prevents them from learning
anything.

While bidirectionality can be mimicked with the combination of two separate
left-to-right and right-to-left LMs (as is done in ELMo), Devlin et al. argue that
this approach is sub-optimal compared to a truly bidirectional model. For this
reason, they introduce the Bidirectional Encoder Representations from Transformers
(BERT), a fully bidirectional language model for transfer learning in NLU.
In order to make bidirectionality possible in BERT, Devlin et al. devise a new
language modelling objective: the Masked Language Model (MLM). In the MLM,
random words in a language model’s input are masked, and the goal is to predict
them. This method makes bidirectionality possible, because models don’t know the
words that are masked in advance, even if they have already seen them in the input.
In addition to the MLM, Devlin et al. also introduce a next sentence prediction task
during the pre-training of their model. In this task, pairs of sentence are extracted
from the language model’s training data, with part of them following each other in
the text, and others selected at random. The goal for the model is then to predict
if the sentences it receives as input follow each other in the text or not.

For NLI, transfer learning with BERT is done as illustrated in figure 2.10 (taken
directly from the original paper). The premise and hypothesis in a sentence pair are
concatenated (with a separator token between them), and a special class ([CLS])
token is appended at the beginning of the sequence. For classification, an additional
output layer is integrated at the end of the model to predict the relation between
the sentences passed as input.

Figure 2.10: Transfer learning to NLI with BERT (Devlin et al., 2018)

In order to make comparison with the work by Radford et al. possible, Devlin et
al. propose a version of BERT with approximately the same number of parameters
as the GPT, named BERTBASE. In addition, another larger version of the model
called BERTLARGE is trained and tested. Both significantly outperform all other
existing models, and BERTLARGE provides impressive new state-of-the-art results
which show the power of transfer learning from bidirectional language models to
NLU. Table 2.8 summarises the reported accuracies of transfer learning approaches
on SNLI and MultiNLI.
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Model SNLI MultiNLI-m MultiNLI-mm
CoVe (McCann et al., 2017) 88.1 - -
DMAN (B. Pan et al., 2018) 88.8 78.9 78.2
ELMo (Peters et al., 2018) 88.7 - -
GPT (Radford et al., 2018) 89.9 82.1 81.4
BERTBASE (Devlin et al., 2018) - 84.6 83.4
BERTLARGE (Devlin et al., 2018) - 86.7 85.9

Table 2.8: Reported accuracy (%) of transfer learning approaches on SNLI and
MultiNLI’s matched (MultiNLI-m) and mismatched (MultiNLI-mm) test sets

2.2 Lexical Entailment

In this section, we describe the notion of lexical entailment and explore related work
on the subject. Since there exists a considerable literature on this topic, we restrict
ourselves here to modern state-of-the-art approaches that propose lexical entailment
metrics or special word embeddings that can easily be incorporated into the baseline
model we chose for this work.

2.2.1 Definition

Lexical Entailment (LE) is a relation similar to that of textual entailment, but at the
word level rather than between sentences. A word is said to be entailed by another
when its meaning can be reasonably inferred from it. In practice, this means that a
word is entailed by another when it can replace it in a sentence without losing the
sentence’s meaning or making it more specific.

As is pointed out by Geffet and Dagan (2005), LE actually ”corresponds to
several lexical semantic relations, such as synonymy, hyponymy and some cases of
meronymy”. For example, when the word people is used instead of its meronym7

faces in the sentence there were familiar faces at the reunion, it can be said that
people is entailed by faces. This affirmation might however not hold in other sit-
uations where the words’ meanings are different: we can never say that people is
entailed by faces when we are talking about the verb or the face of the moon, for
example. This demonstrates how LE is a relation dependent on context.

In some publications (Vulić, Gerz, et al., 2017), the term lexical entailment is
used to describe the more restrictive relation of hypernymy. Hyponymy/hypernymy
corresponds to the is-a relationship between hyponyms and hypernyms and can be
seen as a hierarchical categorisation of words’ meanings. For example, the word
dog is a hyponym of animal, because all dogs belong to the animal category, and a
hypernym of dachshund, because it refers to a specific breed of dogs.

Contrarily to our definition of LE, hyponymy is not tied to a context and is
defined for all the different meanings of a word. For example, the word mouse is
considered to be a hyponym of animal no matter what context it appears in, because

7Meronymy corresponds to the part-of lexical relationship. For example, the word tail is said
to be a meronym of dog, because it denotes a part or constituent of it.
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one of its possible meanings is a small rodent (and even though in some other situa-
tion it could mean a part of a computer). Hence, with our definition, we can say that
lexical entailment includes but is not limited to the stricter relation of hyponymy.
In a sense, it can be said that hyponymy/hypernymy entails lexical entailment, and
that it is therefore sufficient but not necessary to determine entailment (a hypernym
is always entailed by its hyponyms).

The elements presented above illustrate how tightly related lexical and textual
entailment are, and why we expect that the inclusion of measures of hyponymy and
LE in natural language inference systems should benefit them.

2.2.2 Tasks and Data Sets

In order to evaluate the ability of models to recognise lexical entailment, a number
data sets have been proposed over the years.

In the paper titled “How we BLESSed distributional semantic evaluation”, Ba-
roni and Lenci (2011) introduce the BLESS data set, a collection of 26,554 word
pairs connected through various lexical relations, such as co-hyponymy, hypernymy
or meronymy.
To build BLESS, Baroni and Lenci selected 200 concrete English nouns in the sin-
gular form describing both living and non-living entities and covering a wide range
of themes (objects, animals, vehicles, ...). They then paired those with other words
(nouns, verbs and adjectives) connected to them through various lexical relations,
producing triplets like dog-HYPER-animal, for example. In addition to related
words, random unrelated pairs were also introduced in BLESS as ”negative” ex-
amples (examples of pairs that should be recognised as non-related).
The resulting data set provides a way to evaluate the ability of distributional se-
mantic models to both recognise whether two words are related and, if they are, to
determine what relation connects them.

In the paper ”Learning to distinguish hypernyms and co-hyponyms”, Weeds et al.
(2014) use the BLESS data set to evaluate the model they present. Since they are
only interested in hypernymy and co-hyponymy, they restrict their evaluation to the
word pairs connected through these particular relations in BLESS. However, in order
to also enable the evaluation of models on their ability to distinguish hypernymy
from other lexical relationships, they also include an equal number of word pairs
either unrelated or connected through different relations in their data. As a result,
a new data set, sometimes referred to as WBLESS in later works (Kiela et al., 2015),
is produced.

Another data set inspired by BLESS, coined BiBLESS, is proposed by Kiela et
al. (2015). The corpus consists in word pairs from BLESS and WBLESS that are
either connected through hypernymy (labelled with -1), hyponymy (labelled with
1) or some other relation (labelled with 0). Models can in this case not only be
evaluated on their ability to distinguish hyponyms/hypernyms from others pairs (a
task known as hypernymy detection), but also on their capability to recognise the
direction of hyponymy/hypernymy (known as hypernym directionality).

Finally, Vulić, Gerz, et al. (2017) introduce the HyperLex data set, a collection
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of 2,616 word pairs (2,163 noun pairs and 453 verb pairs) graded on a scale from 0
to 10 for lexical entailment (defined here in its more restricted sense of hypernymy).
The grade associated to each pair in the set describes the strength of the hypernymy
relationship between the words that compose it, with 0 denoting no entailment at
all and 10 representing the strongest entailment relationship possible.
To build HyperLex, its authors selected word pairs covering a wide range of themes
from the USF norms data set (Nelson et al., 2004) and annotated them with lexical
relations automatically extracted from WordNet (Miller, 1995). They then presented
those pairs to human annotators on a crowdsourcing platform and asked them to
grade them on a scale from 0 to 6 for the relation of lexical entailment. After
validating the results, the grades associated to the pairs where re-scaled linearly
from 0 to 10.
Vulić et al. justify their choice to use graded lexical entailment in HyperLex by citing
theories from cognitive science. They argue that humans reason about entailment
in a gradual rather than binary way, which implies that graded lexical entailment
data is necessary to model the relationship accurately. To back their proposition,
they analyse inter-annotator agreement in their data set and perform a number
of comparisons between the grades obtained in HyperLex and the relations they
extracted from WordNet for the pairs that compose it. With this approach, they
show that the scores in their data set are highly reflective of human perception of
lexical entailment, proving their hypotheses right and demonstrating the quality of
their corpus for the evaluation of LE models.

2.2.3 Lexical Entailment Models

In order to model and measure lexical entailment between words, a number of met-
rics, specialised vector spaces and word embeddings have been proposed over the
years. These approaches can be regrouped in two main categories: unsupervised
and supervised. The following sub-sections explore the subset of models in these
categories that were considered in this work to be integrated with LEAN.

2.2.3.1 Unsupervised Approaches

Unsupervised approaches to lexical entailment often propose metrics to compute
entailment between existing word embeddings, or new vector spaces learned with
special objectives on unlabelled data.

An advantage of unsupervised approaches is that they usually suffer less from
over-fitting and offer better generalisation power than their supervised counterparts.
However, their performance on lexical entailment benchmarks is often worse, and
they ”are unfit for [the] task [of graded lexical entailment] and unable to surpass the
performance of simple frequency baselines” (Rei et al., 2018). This is why supervised
methods were also considered in this work.

In the paper ”A Vector Space for Distributional Semantics for Entailment”, Hen-
derson and Popa (2016) present a vector space providing ”a formal foundation for
a distributional semantics of entailment” (Henderson and Popa, 2016).
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The framework they propose is based on the concept of vectors of binary features
modelling what information is or isn’t known in a word (rather than what informa-
tion is true or false, like in most other distributional semantic vector spaces). This
choice is justified by the fact that entailment is an asymmetric relation determined
by knowledge about specific features, rather than by observations of their truth.

In particular, a word x can be said to entail another word y if and only if
everything known in y is also known in x. The inverse is not true, and something
known in x but unknown in y still means that x can entail y. Therefore, if x and y
are represented by vectors of n binary features indicating whether some information
is known (1) or not (0), the probability that x entails y is given by:

P (x⇒ y | x, y) =
n∏

k=1

(1− (1− xk)yk)

To learn a model of lexical entailment from data, Henderson and Popa propose to
approximate these binary feature vectors by reasoning with distributions over them.
However, they observe that the dimensions of the vectors are not independent. For
example, a given dimension could be modelling knowledge about a feature being
true, while another could do so for the same feature being false. In that case,
the two dimensions would be in a situation of mutual exclusion and therefore not
independent. Because of this kind of inter-dependencies between features, the prior
probability distributions over the vectors are not factorised, which makes exact
inference on them intractable.

To get around this issue, Henderson and Popa propose a mean-field approxima-
tion where it is assumed that the posterior probabilities of the vectors are factorised.
They underline how ”in practice, this is a much weaker assumption than assuming
the prior is factorised” (Henderson and Popa, 2016). Developing on this idea, they
come up with several entailment operators for their proposed vector space and go
on to re-interpret the Word2Vec model (Mikolov et al., 2013) ”as approximating an
entailment-based model of the distributions of words in contexts” (Henderson and
Popa, 2016). They then proceed to evaluate the quality of their proposed space on
the WBLESS data set and show that it performs better than previous work on both
hypernymy detection and direction classification.

In a later publication, Henderson (2017) reuses the ideas from the work by Hen-
derson and Popa (2016) to learn new word embeddings specialised for lexical entail-
ment. To train the embeddings, the Word2Vec model is used, but its objective is
replaced with a function derived from the entailment operator defined in (Henderson
and Popa, 2016):

log(P (x⇒ y)) ≈ X 5 Y = σ(−X) · log(σ(−Y ))

where X, Y are the vector representations for the words x and y, and σ is the sigmoid
function. The newly learned word embeddings are called Word2Hyp, and entailment
between them can be computed by using the operator described above.

Again, to assess the performance of Word2Hyp, Henderson evaluates it on the
WBLESS data set. Results on both the hypernymy detection and direction classifi-
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cation tasks show that the model reaches new state-of-the-art results at the time of
its publication.

2.2.3.2 Supervised Approaches

Most supervised approaches to lexical entailment propose mappings from existing
vector spaces to new ones learned with the help of manually labelled LE data. As
mentioned in the previous sub-section, these methods usually perform better than
unsupervised ones on LE benchmarks, in particular for graded lexical entailment
tasks.

In the paper ”Specialising Word Vectors for Lexical Entailment” (Vulić and
Mrkšić, 2018), the authors present the Lexical Entailment Attract-Repel (LEAR), a
method to transform existing vector spaces to make their topology more reflective
of the LE relation. To do so, the attract-repel algorithm (Mrkšić et al., 2017) is used
with a special cost function combining similarity and lexical entailment terms.

Figure 2.11: Effect of the LEAR algorithm on a transformed vector space (Vulić
and Mrkšić, 2018)

The effect of LEAR is illustrated in figure 2.11, extracted from the paper by Vulić
and Mrkšić (2018). Vectors for words that are semantically similar are brought closer
together by reducing the cosine distance between them, while vectors for dissimilar
words are moved away from each other. The lexical entailment term of the cost
function also changes the norms of word vectors: more ”general” words see their
norm grow, while more ”specific” ones see it shrink.

With this approach, it becomes possible to accurately predict the degree of lexical
entailment between two words by using the function:

ILE(x, y) = dcos(x, y) +Dj(x, y)

where dcos is the cosine distance and Dj a function measuring the difference between
x and y ’s norms. A word represented by a vector y that is close to another vector x
and has a larger norm is expected to be entailed by the word represented by x, with
the degree of entailment between the words defined both by how close their vectors
are and how much larger the norm of y is compared to that of x.
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Vulić and Mrkšić evaluate LEAR’s performance on the BLESS data set for LE di-
rection classification, on WBLESS for LE detection, and on BiBLESS for both. They
also test the model on Hyperlex for graded lexical entailment. On all four bench-
marks, new state-of-the-art results are reached at the time of publication. However,
although LEAR proves to be an efficient method to predict lexical entailment, an is-
sue subsists with the algorithm: only the embeddings for words seen during training
are transformed, with the rest of the vector space remaining unchanged.

The Supervised Directional Similarity Network (SDSN) (Rei et al., 2018) pro-
poses to solve this problem. The model consists in a deep feed-forward neural
network trained in a supervised manner to predict graded lexical entailment.

Figure 2.12: Architecture of the SDSN (Rei et al., 2018)

The architecture of the SDSN is illustrated in figure 2.12 (taken from the paper
by Rei et al. (2018)). In the image, w1 and w2 are pre-trained, general purpose
word embeddings that are passed through g1 and g2, two simple feed-forward layers
with sigmoid activation functions that act as gating layers to learn representations
for each word conditioned on the other. Component-wise multiplication is applied
between each word embedding and the output of the gating layer for the other word,
and the results are passed through mapping layers m1 and m2 (feed-forward layers
with tanh activation). Then, the mapped vectors are multiplied component-wise,
and the result is passed through a hidden feed-forward layer with tanh activation
and an output layer. Finally, the scalar value output by the network is re-scaled
between 0 and the desired maximum lexical entailment score S with a scaled sigmoid
function.

To boost the performance of the SDSN, Rei et al. also propose to include sparse
distributional features in the training procedure and to use additional supervision.
With all of this, they report the best results to date on the Hyperlex data set.

An advantage of the SDSN over LEAR is that, instead of specialising individual
word embeddings for lexical entailment, the model learns a mapping function from
one vector space to another which can be applied not only on the words seen during
training, but also on any other embedding of the input space.
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Chapter 3

Baseline: The ESIM Model

The Enhanced Sequential Inference Model (ESIM) (Chen, Zhu, Ling, Wei, et al.,
2017a) is a sentence matching model for NLI that reached state-of-the-art results at
the time of its publication and has stayed among the top performing systems since
then. The architecture of the model is simple yet powerful, and its integration with
new components can usually be done in a seamless way. Thanks to this, the model
has been reused, modified and augmented in many other publications (Chen, Zhu,
Ling, Inkpen, et al., 2018; Peters et al., 2018; Williams et al., 2018; Zhang et al.,
2018), often with the outcome of seeing its performance increased even further.

These elements led us to choose ESIM as a baseline for this work and to use its
architecture as a basis for the new model and experiments we describe in chapter 4.

The rest of this chapter is structured as follows. In section 3.1, a detailed de-
scription of ESIM’s architecture is given. In section 3.2, our implementation of the
model with PyTorch is briefly presented. Finally, section 3.3 provides information
about the specific parameters used to train the model, the experiments led on it and
the results that were obtained with it on three famous benchmarks for NLI.

3.1 Description of the Model

A high level view of ESIM’s architecture is presented in figure 3.1 below. As de-
scribed in the original paper, the model can be subdivided into three main com-
ponents that serve different purposes in the task of predicting inference between
natural language sentences.

The first component, called input encoding, is used to specialise the embeddings
for the words in the premises and hypotheses of some NLI task to make them context
dependent.
Then, local inference modelling computes a form of soft attention between the spe-
cialised word embeddings to model interactions between them.
Finally, the inference composition component merges the representations learned
by local inference modelling and uses the result to predict the classes associated to
sentence pairs.
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Figure 3.1: Architecture of the Enhanced Sequential Inference Model (ESIM) (Chen,
Zhu, Ling, Wei, et al., 2017a)

3.1.1 Input Encoding

To encode the words that compose the premises and hypotheses in some NLI task,
pre-trained word embeddings are used in ESIM. In figure 3.1, these word embeddings
are represented by ai, i ∈ {1, ..., l} for the premise a of a sentence pair and bj, j ∈
{1, ...,m} for the hypothesis b.

”General purpose” pre-trained word embeddings such as GloVe (Pennington et
al., 2014) or Word2Vec (Mikolov et al., 2013) usually learn representations for words
that are independent from context. Hence, to make the ai and bj context dependent
in ESIM, Chen, Zhu, Ling, Wei, et al. (2017a) pass them through a bi-LSTM and
take the resulting hidden states as their new representations.
Bi-LSTMs consist in the concatenation of the hidden states of a Long Short Term
Memory (LSTM) network applied both from left-to-right and from right-to-left on
some input sequence (for a detailed description of the inner workings of LSTMs, we
refer the reader to the work by Hochreiter and Schmidhuber (1997), or Christopher
Olah’s blog1).

1https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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If we denote with LSTM(x1, x2, ..., xi) the output of a left-to-right LSTM at
time step i for a sequence x = {x1, x2, ..., xn}, and with LSTM(xn, xn−1, ..., xi)
the output of the same LSTM applied from right-to-left on x, the contextualised
representations of ai and bj in ESIM are obtained with:

āi = [LSTM1(a1, a2, ..., ai);LSTM1(al, al−1, ..., ai)]

b̄j = [LSTM1(b1, b2, ..., bj);LSTM1(bm, bm−1, ..., bj)]

where the symbol ”;” inside square brackets indicates the concatenation of vectors.

3.1.2 Local Inference Modelling

Once the words in the premise and hypothesis passed as input to ESIM have been
encoded, a form of soft attention is computed between them to model their interac-
tions. The objective of this step is to try and detect inferences between the words
in the two sentences which could help the system determine the class associated to
the pair.

First, the similarity between the encoded embeddings of the premise āi, i ∈
{1, ..., l} and those of the hypothesis b̄j, j ∈ {1, ...,m} is computed with the dot
product (corresponding to an unnormalised measure of their cosine similarity):

eij = āi
T b̄j

Then, the attention weights eij are used to compute a representation for each
word in the premise conditioned on those in the hypothesis, and vice-versa:

ãi =
m∑
j=1

exp(eij)∑m
k=1 exp(eik)

b̄j,∀i ∈ {1, ..., l}

b̃j =
l∑

i=1

exp(eij)∑l
k=1 exp(ekj)

āi,∀j ∈ {1, ...,m}

In the formulas above, the attention weights computed between each word in
the premise and all of those in the hypothesis are transformed to a probability
distribution with a softmax function, and they are then used in a weighted sum of
the encoded words of the hypothesis. The same is done the other way around for
every word in the hypothesis.
This way, information relevant to each word in the premise and hypothesis is selected
in the other sentence to learn a representation of the interactions between the two.

To model inference between sentence pairs, the encoded and conditioned repre-
sentations of words are concatenated in new vectors, along with their difference and
component-wise product:
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cai = [āi; ãi; āi − ãi; āi � ãi],∀i ∈ {1, .., l}
cbj = [b̄j; b̃j; b̄j − b̃j; b̄j � b̃j],∀j ∈ {1, ..,m}

The authors of ESIM explain that they ”expect [...] such operations [to] help
sharpen local inference information between elements in the tuples and capture in-
ference relationships such as contradiction” (Chen, Zhu, Ling, Wei, et al., 2017a).

3.1.3 Inference Composition

To compose the information captured by the cai and cbj , a second bi-LSTM is used in
the network. However, because these vectors introduce a lot of new dimensions to the
problem, the cai and cbj are first passed through a mapping function F consisting in
a simple feed-forward layer with ReLU activation, to control the model’s complexity:

c̄ai = F (cai) = ReLU(WF cai + bF )

c̄bj = F (cbj) = ReLU(WF cbj + bF )

After passing the c̄ai and c̄bj through the second bi-LSTM, new vectors are ob-
tained:

vai = [LSTM2(c̄a1 , c̄a2 , ..., c̄ai);LSTM2(c̄al , c̄al−1
, ..., c̄ai)]

vbj = [LSTM2(c̄b1 , c̄b2 , ..., c̄bj);LSTM2(c̄bm , c̄bm−1 , ..., c̄bj)]

Then, to merge the vai and the vbj , average and max. pooling operations are
applied on vectors belonging to the same sentence, and the results are concatenated
in a final representation v:

va,avg =
l∑

i=1

vai
l
, va,max =

l
max
i=1

vai

vb,avg =
m∑
j=1

vbj
m
, vb,max =

m
max
j=1

vbj

v = [va,avg; va,max; vb,avg; vb,max]

To predict the probabilities of the classes associated to the input premise and
hypothesis, the vector v is passed through a two-layer perceptron G with tanh and
softmax activation functions:

y = G(v) = softmax(WG2tanh(WG1v + bG1) + bG2)

The class predicted by the model is the one with the highest probability in y.
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3.2 Implementation with PyTorch

To evaluate our baseline and later enhance it with LE information (more on that
in chapter 4), we implemented ESIM with PyTorch2, an efficient and easy to use
Python framework for deep learning. Our code is publicly available on Github in
the repository at the address https://github.com/coetaur0/ESIM.

3.2.1 Structure of the Code

The code in our repository is organised as follows:

• The actual implementation of the model is located in the esim/ folder, which
acts as in installable Python package that can be used both to pre-process
NLI data and to create an instance of our implementation of ESIM that can
be trained and tested with PyTorch.

• The scripts/ folder of the repository contains Python scripts to download and
pre-process the data necessary for the model (NLI data sets and pre-trained
word embeddings), as well as all the code used to train and test ESIM on
SNLI, MultiNLI and the Breaking NLI data set.

• All the data downloaded and pre-processed with the scripts mentioned above
is saved in the data/ folder of the repository. NLI data sets are stored in the
dataset/ sub-directory after they have been downloaded, pre-trained embed-
dings in embeddings/, and pre-processed data in the preprocessed/ folder.
The data/ folder is also used to save checkpoints containing the state and the
weights of the model produced at each epoch during training. The checkpoints
can later be used to test the model or to resume training from a certain point.

• The config/ folder of the repository contains JSON files defining the specific
parameters used to pre-process the data and to train and test ESIM. These
files are called by the code in the scripts/ folder at execution time.

3.2.2 The esim package

As mentioned in the previous section, the esim/ folder of our repository acts as
a Python package that can be imported in scripts to pre-process NLI data and to
train and test ESIM.

In the sections below, we provide a high-level view of the organisation of the
package and some information about our implementation of the model. However,
we invite the reader to directly consult the sources for more details about its inner
working and the optimisations we applied to speed up computations on GPUs. All
the classes, methods and functions in the code are fully documented with inline
Python docstrings to make our implementation as easy to understand as possible.

2https://pytorch.org/

34

https://github.com/coetaur0/ESIM
https://pytorch.org/


Chapter 3. Baseline: The ESIM Model Aurélien Coet

3.2.2.1 Pre-processing

All the code relative to the pre-processing phase is located in the data.py file of the
directory. After the package has been installed, the corresponding Python module
can be imported in another Python file with the import esim.data instruction.

The esim.data module defines a Preprocessor class that can be used to open
an existing NLI data set, to compute its word dictionary (a dictionary associating
each word in the data set’s vocabulary to a unique index) and to transform the words
in the sentences that compose it to their indices. The class can also be used to build
embedding matrices with pre-trained vectors for the data set’s word dictionary.
When it is instantiated, Preprocessor takes some parameters as input to define if
words in the pre-processed data set need to be lower-cased, if punctuation should
be ignored, if stop words should be removed, etc.

In addition to Preprocessor, the esim.data module also defines a class called
NLIDataset that can be used to iterate over the instances of a pre-processed data
set. NLIDataset inherits from PyTorch’s Dataset class, which is designed to be
used with the framework’s special DataLoader iterator class. This class allows users
to easily read data in batches and to shuffle it, which is particularly useful during
the training of deep learning models.

3.2.2.2 Model

The code for the implementation of ESIM is spread over multiple files in the esim/
folder:

• In the utils.py file, all the low-level functions used in the model to perform spe-
cial computations on batches of data, such as masked operations, are defined.
Batched operations are used in our implementation to optimise its performance
on GPUs and shorten training and testing times.

• In layers.py, the different custom layers needed by ESIM are defined.
In particular, we implement a special sequence-to-sequence encoder in the
Seq2SeqEncoder class, because PyTorch lacks support for processing batches
of variables length sequences with recurrent neural networks.
We also define a RNNDropout layer to correctly apply dropout on the input
of RNNs (in the case of RNNs, dropout must be applied on the same dimen-
sions of each input vector of the same sequence, which cannot be done with
PyTorch’s default Dropout module).
Finally, we define the layer to compute attention between words in premises
and hypotheses in the SoftmaxAttention class of the module.

• The actual definition of the architecture of ESIM is described in the model.py
file of the package, in the ESIM class. The class inherits from torch.nn.Module,
which is used in PyTorch to define layers or models that can be trained with
the framework’s special autograd3 mechanism.

3https://pytorch.org/docs/stable/notes/autograd.html
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The ESIM class simply stacks the custom layers from layers.py with other pre-
defined PyTorch modules to build the model’s architecture as it was described
in section 3.1.
The model can be used in other Python modules or script by importing it with
the instruction from esim.model import ESIM.

3.2.3 Scripts

Different scripts are used in the repository to perform operations with the classes
from the esim package:

• The fetch data.py script can be used to download NLI data sets such as SNLI
and pre-trained embeddings like GloVe so that they can later be used in the
model.

• The preprocessing/ sub-directory of the scripts/ folder contains code to pre-
process SNLI, MultiNLI and the Breaking NLI data set with the Preprocessor
class from esim.data.
The scripts take configurations file as argument to define if words in the data
sets need to be lower-cased, stop words removed, punctuation ignored, and
if beginning- and end-of-sentence tokens must be used. By default, the pa-
rameters from the files in the config/preprocessing folder of the repository are
used.

• In the training/ sub-folder, the scripts to train ESIM on SNLI and MultiNLI
are defined. Again, they take configuration files as argument to determine
their training parameters, such as the number of epochs to apply, the batch
size to use, the optimiser’s learning rate, etc.. Default configuration files are
located in the config/training directory.

• The scripts to test pre-trained versions of ESIM on SNLI, MultiNLI and the
Breaking NLI data set are located in the testing/ sub-folder of scripts/.
The same file can be used to test the model on both SNLI and Breaking NLI :
the test snli.py script must be called with the paths to a pre-processed test set
and a checkpoint as arguments to compute ESIM’s accuracy on the selected
data set.
In the case of MultiNLI, the test mnli.py script is called with a configuration
file and the path to a checkpoint. A default configuration is provided in the
config/testing folder of the repository.

All the instructions to install the esim package and its dependencies on a machine
and to use the scripts to train and test the model are given in the repository’s README.

A checkpoint containing the weights of the best model we trained with our im-
plementation on SNLI is also provided in the checkpoints/SNLI/ folder. This check-
point can be used with the test snli.py script to reproduce our results without having
to train the entire model again.
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3.3 Evaluation and Results

3.3.1 Data Sets and Evaluation Procedure

In order to evaluate the performance of our implementation of ESIM, we train and
test the model on three famous NLI tasks: SNLI, MultiNLI and the Breaking NLI
data set.

For SNLI, the model is first trained on the corpus’ training set and validated on
its development set. Then, the weights of the model at the epoch were it performs
best on the development set are re-used to evaluate it on the test set, and its classi-
fication accuracy is reported (the accuracy is the percentage of correct predictions
returned by the model).

The same procedure is followed to evaluate ESIM on MultiNLI, with the differ-
ence that the labels predicted by the model for the instances in the matched and
mismatched test sets of MultiNLI have to be submitted to the data set’s Kaggle
competitions45 to retrieve its classification accuracy on them.

As reported in section 2.1.1.3, the Breaking NLI (BNLI) data set consists only
in an additional test set for SNLI. Hence, the weights of the best model pre-trained
on SNLI are re-used to evaluate it on BNLI.

3.3.2 Training Details and Parameters

The exact same procedure and parameters as the ones reported in the paper by
Chen, Zhu, Ling, Wei, et al. (2017a) are used to train our implementation of ESIM:

• During pre-processing, beginning- and end-of-sentence (BOS and EOS) tokens
are added at the beginning and end of each sentence in the data sets. All
words in the data sets’ sentences are simply tokenised, without lemmatising
or lowercasing them, and stop words are kept.

• The embeddings for out-of-vocabulary words are initialised randomly following
a normal distribution, and all embeddings are updated during training.

• To optimise the model’s weights, the Adam learning algorithm is used with an
initial learning rate of 0.0004, a first momentum of 0.9, a second momentum
of 0.999 and batches of 32 instances.

• Dropout with a rate of 0.5 is applied on all feed-forward connections in the
network during training. Gradient clipping is also used with a maximum value
of 10.0.

• The size of all hidden layers in the network is set to 300.

4https://www.kaggle.com/c/multinli-matched-open-evaluation
5https://www.kaggle.com/c/multinli-mismatched-open-evaluation
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• A maximum of 64 epochs are applied to train the model. Early stopping with
a patience of 5 is used: if after 5 epochs the classification accuracy of the
model on the validation set doesn’t improve, training is stopped.

3.3.3 Results

The classification accuracy of our implementation of ESIM on SNLI is reported in
table 3.1 below. The results are in line with those reported by Chen, Zhu, Ling,
Wei, et al. (2017a).

Split Accuracy (%)
Training 93.2

Development 88.4
Testing 88.0

Table 3.1: Accuracy of our implementation of ESIM on the SNLI corpus

On MultiNLI, our implementation obtains the results presented in table 3.2. The
values are slightly above those reported by Williams et al. (2018).

Split Accuracy (%)
Training 87.7

Development matched 77.0
Development mismatched 76.8

Testing matched 76.6
Testing mismatched 75.8

Table 3.2: Accuracy of our implementation of ESIM on the MultiNLI corpus

Finally, on the Breaking NLI data set, the model pre-trained on SNLI reaches an
accuracy of 65.5%, which is similar to the value reported by Glockner et al. (2018)
for their implementation.
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Lexical Entailment Augmented
Network

In this chapter, we introduce the Lexical Entailment Augmented Network (LEAN),
a model for NLI based on the architecture of ESIM, but enhanced with lexical
entailment information about the words it receives as input.

During the building of LEAN, three specific LE metrics were used to try and
enhance the model. These are presented in section 4.1 of this chapter.
Multiple ways of including the LE metrics in the model were also investigated and
are described in section 4.2.
In section 4.3, our implementation of LEAN with PyTorch is briefly introduced.
Finally, the procedure and parameters used to train and test the model are reported
in section 4.4, as well as the results obtained with LEAN on the three data sets used
to evaluate ESIM in the previous chapter.

4.1 Lexical Entailment Metrics

To investigate the use of lexical entailment in NLI, three LE metrics are integrated
into LEAN to see if they can help it predict inference. These metrics, which were
already introduced in section 2.2.3, are detailed in the following sub-sections.

4.1.1 Word2Hyp

The first metric that we include in LEAN is the one associated with the Word2Hyp
word embeddings presented by Henderson (2017). To compute it, the words in
the premises and hypotheses of NLI data sets are transformed to their respective
Word2Hyp embeddings, and the formula presented in section 2.2.3.1 is then used to
determine if they entail each other or not:

log(P (x⇒ y)) ≈ X 5 Y = σ(−X) · log(σ(−Y ))

In the formula, X and Y are the embeddings for words x and y, and σ is the
sigmoid function. With this metric, higher values indicate a relation of LE between
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two words, while smaller values mean that no such relation exists between them.

Pre-trained word embeddings provided by Dr. James Henderson are used for this
part, and vectors for words absent from the Word2Hyp vocabulary are initialised
randomly as follows:

• First, for each dimension of the pre-trained vectors, the mean and standard
deviation are computed over all available embeddings.

• Then, vectors for unseen words are initialised randomly, dimension by dimen-
sion, following normal distributions with the means and standard deviations
computed in the previous step.

4.1.2 LEAR

The second metric that we use in LEAN is the one defined for the LEAR word
embeddings (Vulić and Mrkšić, 2018). Again, to compute it, words in premises and
hypotheses are transformed to their respective LEAR vectors, and the degree of
entailment between them is measured with the formula from section 2.2.3.2:

ILE(x, y) = dcos(x, y) +D2(x, y)

where dcos(x, y) is the cosine distance between embeddings x and y, and D2(x, y)
is a measure of the difference between their norms, defined as follows:

D2(x, y) =
||x|| − ||y||
||x||+ ||y||

where ||x|| and ||y|| denote the euclidean norms of x and y, respectively.

In the case of the ILE metric, since it is a distance, smaller values indicate a
higher degree of entailment between two words, and larger values a weaker form of
entailment or no entailment at all.

For all our measures, we use the pre-trained word embeddings distributed by
the authors of LEAR on their Github repository1. Unseen words are initialised
randomly in the same manner as Word2Hyp vectors.

4.1.3 SDSN

In addition to Word2Hyp and LEAR, we also tried to integrate the measures of LE
produced by the SDSN (Rei et al., 2018) into LEAN during our experiments.

The original implementation of the model, available on GitHub2, was done with
Theano3, a deep learning framework for Python. Unfortunately, the code in that
repository didn’t work well with our version of LEAN. Hence, we reproduced the

1https://github.com/nmrksic/LEAR
2https://github.com/marekrei/sdsn
3http://deeplearning.net/software/theano/
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SDSN with PyTorch to include it in our computations, and we re-used the pre-
trained weights made available by its authors on their GitHub repository to make
predictions with it.

The experiments we conducted with the SDSN showed that including it in LEAN
did not improve the model’s performance, and on the contrary even deteriorated it.
This is the reason why this metric was eventually not included into our model and
is absent from the rest of this chapter.

4.2 Inclusion of Lexical Entailment in LEAN

Three main approaches were investigated in this work for the integration of the two
first metrics from section 4.1 into LEAN. The following sub-sections detail them.

4.2.1 First Approach: LEAN-1

A high-level view of the first approach evaluated in this work is represented in
figure 4.1. The model, referred to as LEAN-1 throughout the rest of this document,
essentially follows the same architecture as ESIM, only with the addition of two new
components (circled in red in the figure).

Figure 4.1: Architecture of LEAN-1
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The new components add supplementary lexical entailment features to the cai ,
cbj and v vectors of ESIM. In the figure, w2hij and learij are matrices containing
the lexical entailment scores from sections 4.1.1 and 4.1.2 computed between the
words in the premise and hypothesis of a sentence pair. A conceptual representation
of how these matrices are produced for two sentences a = ai,∀i ∈ {1, ..., l} and
b = bj,∀j ∈ {1, ...,m} is given in figure 4.2.

Figure 4.2: Lexical entailment matrices in LEAN-1

4.2.1.1 First Component

For each word in the premise of a sentence pair, the average of the lexical entailment
scores between that word and all of those in the hypothesis is computed, as well as
the maximum and the minimum value (this step is represented by the avgi, maxi and
mini nodes in figure 4.1). This procedure is applied on the two lexical entailment
matrices used in LEAN, which produces six new features per word in the premise
that are concatenated to the cai vectors. The same is done the other way around
for every word in the hypothesis (with the operations represented by avgTj , maxTj
and minT

j ), and the additional features are appended to the vectors cbj .

Figure 4.3 below illustrates how the avgi and maxi operations are computed,
and figure 4.4 what the transpose in avgTj means in practice.

Figure 4.3: Computation of the word-level average and maximum LE score
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Figure 4.4: Computation of the transposed word-level average LE score

The objective of this step is to try and enhance the local inference modelling
layer of ESIM with additional lexical entailment information explicitly computed
between all the words in a sentence pair.

4.2.1.2 Second Component

In the second component, the average, maximum and minimum lexical entailment
scores are computed at the sentence level for each LE metric and concatenated to
the vector v. In practice, this is done by computing the average, maximum and
minimum LE scores over the entire lexical entailment matrices instead of on only
one row or column like in the first component of LEAN-1.

The objective of this step is to try and capture more general information about
lexical entailment between the two sentences in a pair, and to use it to augment
ESIM’s inference composition layer.

4.2.2 Second Approach: LEAN-2

If we look into the words that compose the vocabularies of the two LE metrics used
in LEAN-1, we observe that they are mostly nouns and verbs, and that there are
almost no ”structural” or stop words among them. This is because stop words don’t
usually carry much information about lexical entailment: they participate more to
the syntax of a sentence than to its semantics.

Since they are absent from the vocabularies of the LE metrics, embeddings for
stop words are randomly generated in LEAN-1, and the scores obtained with them
do not really reflect entailment. Because of this, it seems logical not to include these
words into the computation of lexical entailment between premises and hypotheses.
However, in LEAN-1, the first component appends LE features to the vectors cai
and cbj of every word in the premise and hypothesis, including stop words. This
means that not computing lexical entailment for them would force us to completely
remove them from the sentences passed as input to the model. This approach seems
too restrictive, as structural words might still carry information about syntax that
could be of interest for the other components of LEAN.

The solution we propose in LEAN-2 is to limit our computation of lexical entail-
ment scores to words that aren’t stop words, like nouns and verbs, but to only use
the second component from LEAN-1 to include that information in the model. This
means that we only compute the average, maximum and minimum lexical entail-
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ment scores at the sentence level for a pair, and not for every word like in LEAN-1,
which allows us to keep stop words in the rest of the model.

4.2.3 Third Approach: LEAN-3

The third and last approach evaluated in this work, called LEAN-3, investigates
whether the inclusion of lexical entailment in the computation of soft attention
improves the model’s performance. To do so, the LEAR and Word2Hyp LE matrices
are used in a weighted sum with the attention matrix eij from ESIM:

sij = eij + λ1w2hij + λ2learij

where λ1 and λ2 are parameters learned during training. The resulting matrix sij
is then used to compute attention between words in premises and hypotheses in the
same way that eij is used in ESIM.
The rest of the model follows LEAN-1’s architecture.

Figure 4.5 below illustrates a high-level view of LEAN-3.

Figure 4.5: Architecture of LEAN-3

44



Chapter 4. Lexical Entailment Augmented Network Aurélien Coet

4.2.4 Other Approaches

Aside from LEAN-1, 2 and 3, we also tried in earlier iterations to just replace the
attention mechanism from ESIM with one that only used the Word2Hyp and LEAR
lexical entailment matrices.

To determine if ”hard” decisions given by binary lexical entailment scores were
more informative than ”soft” ones with continuous values, we also tried to binarise
the LE matrices before using them in all three versions of LEAN. To do so, we
applied thresholds on their values to determine whether there was a relation of
entailment between two words (1), or not (0):

w2hbij =

{
1, if w2hij > tw2h

0, otherwise
,∀i, j

learbij =

{
1, if learij > tlear

0, otherwise
,∀i, j

In the formulas above, tw2h and tlear are thresholds defined as the medians of all
values computed for each lexical entailment metric on the whole training set of a
NLI corpus.

Our experiments with the two approaches described in this section showed that
they didn’t improve LEAN’s performance, which is why they were eventually aban-
doned.

4.3 Implementation with PyTorch

Our code for LEAN is publicly available on GitHub at the address https://github.
com/coetaur0/LEAN. The repository is organised in the exact same way as the one
from section 3.2, except that the esim/ folder is replaced by a lean/ directory. The
main differences with the implementation of ESIM are the following:

• In utils.py, additional functions to compute lexical entailment between pre-
trained Word2Hyp and LEAR embeddings are defined, as well as functions to
compute the masked average, maximum and minimum on batches of lexcial
entailment matrices.

• The lean.py file replaces esim.py and defines three models for the different
versions of LEAN instead of one for ESIM.

• An additional sdsn.py file contains an implementation with PyTorch of the
SDSN to compute entailment on sentence pairs with the metric.

For more details about the implementation of LEAN with PyTorch, we invite the
reader to directly consult the code in the repository. Again, all the classes, methods
and functions are fully documented with inline Python docstrings, and instructions
on how to train and test the model are given in the repository’s README.
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4.4 Evaluation and Results

4.4.1 Data Sets and Evaluation Procedure

In order to compare it with ESIM and to determine if lexical entailment information
does indeed improve the performance of the model, LEAN is trained and tested on
the same three data sets as ESIM, following the exact same procedure.

4.4.2 Training Parameters

The same parameters as those used for ESIM are applied on LEAN during training,
only with the following small differences in the pre-processing phase:

• In LEAN-1 and LEAN-3, all words are lowercased during pre-processing, and
no beginning- or end-of-sentence tokens are added to the premises and hy-
potheses. This choice is made because the vocabularies of the LE metrics do
not contain embeddings for uppercased words or for BOS and EOS.

• In LEAN-2, the same parameters as in LEAN-1 and 3 are used, but stop
words are removed from sentences when lexical entailment is computed be-
tween them.

During the training phase, we also performed some hyper-parameter optimisation
on the layers where lexical entailment was added to fine-tune our models and get
the best performance possible.

4.4.3 Results

Table 4.1 summarises the accuracies obtained with each version of LEAN on the
SNLI corpus. Values in parentheses indicate the difference with the results obtained
with ESIM on the same corpus.

Split LEAN-1 LEAN-2 LEAN-3
Training 93.3% 93.0% 93.0%
Development 88.5% 88.4% 88.2%
Testing 88.4% (+0.4) 88.1% (+0.1) 88.2% (+0.2)

Table 4.1: Accuracy of the three versions of LEAN on SNLI
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The results obtained with LEAN on MultiNLI are reported in table 4.2.

Split LEAN-1 LEAN-2 LEAN-3
Training 88.3% 88.9% 89.6%
Development matched 77.6% 77.0% 77.7%
Development mismatched 77.6% 77.4% 77.6%
Testing matched 77.7% (+1.1) 77.3% (+0.7) 78.1% (+1.5)
Testing mismatched 76.8% (+1.0) 76.0% (+0.2) 76.2% (+0.4)

Table 4.2: Accuracy of the three versions of LEAN on MultiNLI

Finally, table 4.3 presents the results obtained on the Breaking NLI data set.

Split LEAN-1 LEAN-2 LEAN-3
Testing 62.6% (–2.9) 60.7% (–4.8) 61.8% (–3.7)

Table 4.3: Accuracy of the three versions of LEAN on the Breaking NLI data set
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Discussion of the Results

5.1 Comparison between LEAN and ESIM

The results from section 4.4.3 show that the inclusion of lexical entailment in LEAN
does help it predict inference more accurately than ESIM. However, the reported
increases in performance aren’t as important as our initial intuition led us to believe
they would be (especially in the case of SNLI), and we even observe a decrease in
accuracy on the Breaking NLI data set.

There are a number of potential explanations for this. First of all, during the
pre-processing phase of our experiments, when we build the embedding matrices for
the LE metrics used in LEAN, we count the number of words absent from their
vocabularies and initialised randomly. On a total of 33,250 different words in SNLI,
8,131 are absent from the pre-trained embeddings for LEAR, while that number
goes as far up as 11,749 for Word2Hyp.
Although we try to produce vectors as close as possible to the spaces of the metrics
during their random initialisation, the embeddings for unseen words do not truly
carry information about lexical entailment. This means that the inclusion of LE
scores computed with them in LEAN potentially adds a lot of noise in the model,
which prevents it from performing as well as if it had access to real pre-trained
vectors for its entire vocabulary.

On the Breaking NLI data set, this phenomenon most likely has an even bigger
impact than on SNLI, because premises and hypotheses only differ by single words.
Hence, if the word being replaced in a premise or its substitute in the hypothesis is
absent from the LE metrics vocabularies, only noise is added in LEAN, instead of
true lexical entailment information. In that situation, the inclusion of the metrics in
the model probably does more harm than good, which might explain why LEAN’s
performance on Breaking NLI is lower than ESIM’s.

In the case of MultiNLI, even more words are absent from the LE metrics’ vo-
cabularies than is the case for SNLI (28,508 for Word2Hyp and 17,717 for LEAR, on
a total of 70,523 words in the data set). However, LEAN’s increase in performance
is larger on MultiNLI than on SNLI. The elements mentioned above can therefore
not constitute the sole explanation for the relatively small improvements between
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our model and the baseline.

This observation leads us to our second hypothesis as to why our model’s perfor-
mance isn’t as good as we initially thought it would be: the metrics we had access
to and included in the model aren’t as informative on NLI as we thought. Indeed,
both Word2Hyp and LEAR are measures of lexical entailment in its more restrictive
sense of hyponymy/hypernymy. Hence, they are much more limited than true LE
and they do not model the other lexical semantic relations that it covers, such as
synonymy or meronymy.

If we pick random examples of sentence pairs connected through entailment in
SNLI, like the ones in table 5.1 below, we observe that in most cases hypernymy
plays little to no role in the decision whether a premise entails a hypothesis or not.
Indeed, as the examples show, a lot of the pairs in the NLI data set consist in
sentences containing the same words but organised differently, or in one sentence
that is a subset of the other. Only rarely does a relation of hypernymy between words
in a premise and hypothesis need to be captured to properly recognise entailment.
The last sentence in table 5.1 is one of the few examples that illustrate such a
situation: because the word ladies entails women, the hypothesis can be inferred
from the premise.

Premise Hypothesis
Chevrolet car on display at a con-
vention.

At a convention, there is a chevro-
let car on display.

Several runners compete in a road
race.

Several runners compete in a
race.

Two ladies looking for bread to
purchase.

Two women looking at bread.

Table 5.1: Examples of sentence pairs labelled with entailment in SNLI

The other problem with the inclusion of measures of hypernymy in LEAN is
that they are mostly informative about the relation of textual entailment, and not
so much about contradiction or neutral pairs. The lexical entailment metrics used in
the model hence probably only help it in a smaller number of cases than we initially
thought, which could be why its increase in performance is not that large compared
to other approaches that also use other lexical relations, like KIM (Chen, Zhu, Ling,
Inkpen, et al., 2018).

Despite all of the elements mentioned above, we still observe an interesting in-
crease in classification accuracy between ESIM and LEAN. The results seem to
indicate that lexical entailment does provide our model with information that helps
it better predict inference.

Although the improvements on SNLI are not as good as we expected, in the case
of MultiNLI the difference between the baseline and our proposed model is actually
quite significant (more than +1% accuracy on both the matched and mismatched
test sets), which indicates that lexical entailment is probably more informative for
that data set. Our model even outperforms KIM by 0.5% on the matched test set
and 0.4% on the mismatched version.
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It is possible that the difference with SNLI could be attributed to the wider range
of types of text covered by MultiNLI: maybe the larger variety of topics addressed
in the corpus incurs the use of a richer vocabulary in sentence pairs and the presence
of more lexical semantic relations such as hypernymy between words?

In terms of training and execution times, the cost of including lexical entailment
in LEAN is nearly free. All our experiments in this work were led on a machine with
an Intel i5 8600K CPU, 16GB of RAM and a NVidia GeForce GTX 1080. All the
models were trained and tested on the machine’s GPU. On average, it took about
17 minutes to train ESIM for one epoch, and 18 to train LEAN. In both cases, 20
epochs were usually executed before early stopping interrupted the process, which
means that on average 5.7 hours were necessary to train ESIM, against 6 for LEAN.
This corresponds to a difference of 18 minutes, which is more or less equivalent to
training LEAN for one more epoch than ESIM.

5.2 Comparison between the Versions of LEAN

Surprisingly, the most naive of the three approaches to integrate lexical entailment
in LEAN is also the most efficient. The results from section 4.4.3 show that LEAN-2
doesn’t perform as well as LEAN-1, even though the model tries to remove some of
the noise from LE metrics by ignoring stop words. We suspect that the main reason
for this is that the first component from LEAN-1 is more important in helping the
model predict inference than the second one included in LEAN-2. We will see in the
ablation analysis from section 5.3 that this intuition appears to be well founded.

The lower accuracy obtained with LEAN-3 compared to the model’s first version
also indicates that using lexical entailment in the computation of soft attention
between premises and hypotheses doesn’t help the system to better capture relations
between their words.
When we compare the similarity matrices from ESIM with LEAR and Word2Hyp’s
entailment matrices, we realise that they mostly focus on the same words, only with
some additional noise due to unseen words in the LE metrics. Lexical entailment
hence probably doesn’t add much useful information to the computation of attention,
and on the contrary even slightly deteriorates the quality of the weights computed
with the approach because of the noise it contains.

5.3 Analysis of the Best Version of LEAN

In this section, we perform a small ablation analysis on LEAN-1 to determine which
components and which metric contribute most to the model’s performance.

5.3.1 Lexical Entailment Metrics

First of all, to assess which one of Word2Hyp or LEAR is the most informative for
LEAN, we train and test the model with only one of the metrics included in it at a
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time, and we measure its accuracy on SNLI. The results are presented in table 5.2.

Model Train Development Test
LEAN-1, Word2Hyp only 93.2% 88.4% 88.2%
LEAN-1, LEAR only 93.4% 88.3% 88.1%

Table 5.2: Ablation analysis on the LE metrics: classification accuracy on SNLI

As we can see in the table, the Word2Hyp metric is apparently a little more useful
than LEAR in predicting inference, even though its vocabulary contains more unseen
words. A potential explanation for this might be that the metric is a little more
robust against noise, because it was trained in an unsupervised manner.

Figure 5.1: Examples of lexical entailment matrices computed with Word2Hyp,
LEAR and the SDSN

We noted in section 4.1.3 that the inclusion of the SDSN in LEAN didn’t im-
prove the model’s accuracy. The issue of overlap between vocabularies mentioned
in section 5.1 is most likely the reason why.
In the SDSN, word embeddings for unseen words are not initialised randomly like in
LEAR or Word2Hyp, because the model uses a fixed architecture with pre-trained
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weights. Hence, words in SNLI or MultiNLI’s vocabulary that are absent from the
SDSN are all converted to a special out-of-vocabulary token and processed as the
same vector during the computation of lexical entailment. This produces incon-
sistent scores that could explain why the SDSN does not help LEAN to predict
inference more accurately.

Figure 5.1 presents a few examples of heat maps for lexical entailment matrices
computed with Word2Hyp, LEAR and the SDSN. In the images, warmer colours
indicate a high degree of entailment, and colder ones the opposite.
When we compare the three different approaches, it becomes quite obvious that
the scores computed with the SDSN are rather inconsistent. If we look at the top
three LE matrices, for example, we see that all three metrics successfully predict
entailment between police officer and man, but that the SDSN is the only one that
fails to recognise entailment between the other words in the sentences.
The same observation can also be made on the other examples in the figure. We
remark in particular that the SDSN does not associate pairs composed of the same
word twice with high entailment scores. This is problematic, since we have seen
that most examples of textual entailment are composed of sentences with high word
overlaps, and that recognising word similarity is therefore as important, if not more,
as recognising hypernymy.

The heat maps from figure 5.1 also provide us with interesting information about
the relations of entailment captured by Word2Hyp and LEAR. We remark for exam-
ple that the two metrics are able to capture rather subtle relations between words,
like the fact that officer entails standing in the first Word2Hyp matrix (which seems
quite coherent with how we usually imagine police officers), or the word tutu en-
tailing wearing in both metrics (again, this is quite coherent, as a tutu is a piece of
clothing).

5.3.2 Components

To determine which of the two lexical entailment components in LEAN-1 participates
most to its performance increase, we train and test the model with only one of them
included in it at a time, and we report its classification accuracy on SNLI in table
5.3.

Model Train Development Test
LEAN-1, 1st component only 93.3% 88.5% 88.3%
LEAN-1, 2nd component only 93.1% 88.3% 88.1%

Table 5.3: Ablation analysis on the components: classification accuracy on SNLI

The results indicate that the first component is more informative than the second
one. This is probably because it provides the model with more fine-grained infor-
mation about entailment between each pair of words in the premise and hypothesis.
This observation is most likely the reason why LEAN-2 did not perform as well as
LEAN-1, despite our attempt to remove noise from it by excluding stop words from
the computation of lexical entailment scores.
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5.3.3 Average, Maximum and Minimum Scores

In the last part of our ablation analysis, we investigate which of the operations used
to aggregate lexical entailment scores is the most useful for LEAN-1. To do so, we
train and test two versions of the model on SNLI: in the first one, only the average
of the lexical entailment scores is computed, and in the second, only the maximum
and minimum scores are used. The results are reported in table 5.4.

Model Train Development Test
LEAN-1, average only 93.1% 88.4% 88.3%
LEAN-1, max./min. only 93.0% 88.4% 88.2%

Table 5.4: Ablation analysis on aggregation operations: classification accuracy on
SNLI

The higher accuracy obtained with the average of the scores indicates that this
operation is more informative to LEAN than the maximum/minimum. This makes
sense, since the average actually includes the maximum and minimum in its com-
putation, while the contrary is not true. The operation also captures information
about every element in a lexical entailment matrix, and not just the ones with the
highest or lowest score: if there is an outlier in the data because of noise, the max-
imum or minimum scores might miss useful information by solely focusing on it,
while the average won’t suffer as much from its effect.
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Conclusion

In this work, we investigated whether the use of lexical entailment metrics in an
existing NLI model helped it to better model inference between natural language
sentences.

In the first chapter of this document, the crux of the problem of natural language
inference was explained in detail, and the importance of the task was made clear
through examples of applications where NLI is useful or even necessary.

Then, in chapter 2, we explored previous work on natural language inference and
lexical entailment. In both cases, we first introduced the tasks and data sets used to
train and evaluate models designed to tackle the two problems. We then went on to
list and describe existing approaches to perform NLI or recognise lexical entailment.
In the case of natural language inference, we specifically focused on deep learning
models, while we limited ourselves to the metrics considered in our proposed model
for lexical entailment.
We particularly underlined in this chapter the lack of existing work investigating
the use of lexical level information in NLI models, which justified our approach in
this paper.

In chapter 3, we presented the model we selected as a baseline in this work and
against which we compared our proposed model. We first described its architecture
in detail, and we then went on to introduce our implementation for it with Pytorch.
Finally, we detailed the procedure we followed to evaluate it and the parameters
we used to train it, and we reported its classification accuracy on three of the most
famous benchmarks for NLI.

In chapter 4, we introduced our proposed model for natural language inference,
the Lexical Entailment Augmented Network (LEAN). We first described the lexical
entailment metrics we used to augment it, and we explained the different approaches
we took to include them in it. Then, we presented our implementation for it, and
we reported its performance on the data sets used to evaluate the baseline.

Finally, in chapter 5, we proposed a discussion of the results obtained with
LEAN. We first compared them with the baseline and tried to explain them. Then,
we compared the different approaches taken in LEAN to include lexical entailment.
At last, we proposed a small ablation analysis on the best version of LEAN to try
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and determine which aspects of the LE metrics contributed most to our model’s
performance.

The results we obtained with LEAN in this work show that lexical entailment
does help natural language inference models to better predict entailment between
sentences. Although the increase in performance of our model compared to the
baseline was not as important as we initially thought on SNLI or the Breaking NLI
data set, we saw that the accuracy of our model on MultiNLI was still quite promis-
ing and showed that lexical entailment constituted information that was useful for
inference at the sentence level.

All of these elements lead us to believe that further work should try to include
more lexical level information into existing NLI models. In particular, it would be
interesting to investigate whether LE can help more recent models like BERT to
predict textual entailment more accurately.
More generally, our experiments in this work show that the inclusion of external
information and priors into deep learning models is most likely beneficial and should
hence be considered more often.
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(1994). “Signature verification using a” siamese” time delay neural network”. In:
Advances in neural information processing systems, pp. 737–744.

Chen, Qian, Zhen-Hua Ling, and Xiaodan Zhu (2018). “Enhancing Sentence Em-
bedding with Generalized Pooling”. In: Proceedings of the 27th International
Conference on Computational Linguistics. Santa Fe, New Mexico, USA: Associ-
ation for Computational Linguistics, pp. 1815–1826. url: https://www.aclweb.
org/anthology/C18-1154.

Chen, Qian, Xiaodan Zhu, Zhen-Hua Ling, Diana Inkpen, and Si Wei (2018). “Neu-
ral Natural Language Inference Models Enhanced with External Knowledge”.
In: Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association
for Computational Linguistics, pp. 2406–2417. url: https://www.aclweb.org/
anthology/P18-1224.

Chen, Qian, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen
(2017a). “Enhanced LSTM for Natural Language Inference”. In: Proceedings of

56

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://dl.acm.org/citation.cfm?id=2140490.2140491
https://doi.org/10.18653/v1/P16-1139
https://doi.org/10.18653/v1/P16-1139
https://www.aclweb.org/anthology/P16-1139
https://www.aclweb.org/anthology/C18-1154
https://www.aclweb.org/anthology/C18-1154
https://www.aclweb.org/anthology/P18-1224
https://www.aclweb.org/anthology/P18-1224


Bibliography Aurélien Coet
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Das, Dipanjan and André FT Martins (2007). “A survey on automatic text sum-
marization”. In: Literature Survey for the Language and Statistics II course at
CMU 4, pp. 192–195.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”.
In: CoRR abs/1810.04805. arXiv: 1810.04805. url: http://arxiv.org/abs/
1810.04805.

Geffet, Maayan and Ido Dagan (2005). “The Distributional Inclusion Hypotheses
and Lexical Entailment”. In: Proceedings of the 43rd Annual Meeting of the As-

57

https://doi.org/10.18653/v1/P17-1152
https://www.aclweb.org/anthology/P17-1152
https://www.aclweb.org/anthology/P17-1152
https://doi.org/10.18653/v1/W17-5307
https://www.aclweb.org/anthology/W17-5307
http://arxiv.org/abs/1707.02786
http://arxiv.org/abs/1707.02786
https://doi.org/https://doi.org/10.1016/j.eswa.2017.02.006
http://www.sciencedirect.com/science/article/pii/S0957417417300829
http://www.sciencedirect.com/science/article/pii/S0957417417300829
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://www.aclweb.org/anthology/D17-1070
https://doi.org/10.1007/11736790_9
http://link.springer.com/10.1007/11736790_9
http://link.springer.com/10.1007/11736790_9
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
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tralia: AAAI Press, pp. 4144–4150. isbn: 978-0-9992411-0-3. url: http://dl.
acm.org/citation.cfm?id=3171837.3171865.

Weeds, Julie, Daoud Clarke, Jeremy Reffin, David Weir, and Bill Keller (2014).
“Learning to Distinguish Hypernyms and Co-Hyponyms”. In: Proceedings of
COLING 2014, the 25th International Conference on Computational Linguis-
tics: Technical Papers. Dublin, Ireland: Dublin City University and Association
for Computational Linguistics, pp. 2249–2259. url: https://www.aclweb.org/
anthology/C14-1212.

Williams, Adina, Nikita Nangia, and Samuel Bowman (2018). “A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference”. In: Proceed-
ings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). New Orleans, Louisiana: Association for Computational Linguistics,
pp. 1112–1122. url: http://aclweb.org/anthology/N18-1101.

Xu, Kelvin, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhutdinov, Richard S. Zemel, and Yoshua Bengio (2015). “Show, Attend and
Tell: Neural Image Caption Generation with Visual Attention”. In: Proceedings
of the 32Nd International Conference on International Conference on Machine
Learning - Volume 37. ICML’15. Lille, France: JMLR.org, pp. 2048–2057. url:
http://dl.acm.org/citation.cfm?id=3045118.3045336.

Yoon, Deunsol, Dongbok Lee, and SangKeun Lee (2018). “Dynamic Self-Attention
: Computing Attention over Words Dynamically for Sentence Embedding”. In:
CoRR abs/1808.07383. arXiv: 1808.07383. url: http://arxiv.org/abs/

1808.07383.

Young, Peter, Alice Lai, Micah Hodosh, and Julia Hockenmaier (2014). “From image
descriptions to visual denotations: New similarity metrics for semantic inference
over event descriptions”. In: Transactions of the Association for Computational
Linguistics 2, pp. 67–78. issn: 2307-387X. url: https://transacl.org/ojs/
index.php/tacl/article/view/229.

Zhang, Zhuosheng, Yuwei Wu, Zuchao Li, Shexia He, Hai Zhao, Xi Zhou, and Xiang
Zhou (2018). “I Know What You Want: Semantic Learning for Text Compre-
hension”. In: arXiv:1809.02794 [cs]. arXiv: 1809.02794. url: http://arxiv.
org/abs/1809.02794.

63

http://dl.acm.org/citation.cfm?id=3171837.3171865
http://dl.acm.org/citation.cfm?id=3171837.3171865
https://www.aclweb.org/anthology/C14-1212
https://www.aclweb.org/anthology/C14-1212
http://aclweb.org/anthology/N18-1101
http://dl.acm.org/citation.cfm?id=3045118.3045336
http://arxiv.org/abs/1808.07383
http://arxiv.org/abs/1808.07383
http://arxiv.org/abs/1808.07383
https://transacl.org/ojs/index.php/tacl/article/view/229
https://transacl.org/ojs/index.php/tacl/article/view/229
http://arxiv.org/abs/1809.02794
http://arxiv.org/abs/1809.02794
http://arxiv.org/abs/1809.02794

	Introduction
	Definition and Scope of NLI
	Interest and Applications
	Contents of this Document

	Related Works
	Natural Language Inference
	NLI Tasks and Data Sets
	The SNLI Corpus
	The MultiNLI Corpus
	The Breaking NLI Data Set
	Other Resources

	Deep Learning Models for NLI
	Sentence Vector-based Models
	Sentence Matching Models
	Transfer Learning Approaches


	Lexical Entailment
	Definition
	Tasks and Data Sets
	Lexical Entailment Models
	Unsupervised Approaches
	Supervised Approaches



	Baseline: The esim Model
	Description of the Model
	Input Encoding
	Local Inference Modelling
	Inference Composition

	Implementation with PyTorch
	Structure of the Code
	The esim package
	Pre-processing
	Model

	Scripts

	Evaluation and Results
	Data Sets and Evaluation Procedure
	Training Details and Parameters
	Results


	Lexical Entailment Augmented Network
	Lexical Entailment Metrics
	Word2Hyp
	LEAR
	SDSN

	Inclusion of Lexical Entailment in LEAN
	First Approach: LEAN-1
	First Component
	Second Component

	Second Approach: LEAN-2
	Third Approach: LEAN-3
	Other Approaches

	Implementation with PyTorch
	Evaluation and Results
	Data Sets and Evaluation Procedure
	Training Parameters
	Results


	Discussion of the Results
	Comparison between LEAN and ESIM
	Comparison between the Versions of LEAN
	Analysis of the Best Version of LEAN
	Lexical Entailment Metrics
	Components
	Average, Maximum and Minimum Scores


	Conclusion
	Bibliography

