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KIM Knowledge-based Inference Model . 23

LMs Language Models . 25, 26

LSTM Long Short Term Memory . 9, 15, 19, 20

MLM Masked Language Model . 27

MLP Multi-Layer Perceptron. 14, 21, 23

mLSTM match-LSTM . 20

MT Machine Translation. 24, 25

MultiNLI Multi-Genre Natural Language Inference. iii, 9–13, 16, 17, 19, 23, 24,
27–29

NLI Natural Language Inference. i, ii, 1–5, 9, 11, 13, 14, 17, 19, 20, 23–29

NLP Natural Language Processing . 1, 3, 17, 24–26, 29

NLU Natural Language Understanding . 1–4, 13, 27

NNs Neural Networks . 4, 7

OANC Open American National Corpus . 9, 10

QA Question Answering . 5, 6

RC Reading Comprehension. 5

ReSAN Reinforced Self Attention Network . 18

rLSTM re-read LSTM . 20

RNN Recurrent Neural Network . 14–16, 22

RTE Recognising Textual Entailment . 1, 2, 5–7, 9, 16, 25, 30

SICK Sentences Involving Compositional Knowledge. iii, 6, 7, 9, 12

SNLI Stanford Natural Language Inference. iii, 7–12, 16, 17, 19, 23–25, 27–29

SPINN Stack-augmented Parser-Interpreter Neural Network . 16, 17

SRL Semantic Role Labelling . 23

TBCNN Tree-based Convolutional Neural Network . 16, 17

TreeRNNs Tree-structured Recursive Neural Networks . 16, 17

XNLI Cross-lingual Natural Language Inference. 12

v



Chapter 1

Introduction

1.1 Definition and Scope of NLI

Natural Language Understanding (NLU) is a sub-domain of Natural Language Pro-
cessing (NLP) and Artificial Intelligence (AI) which aims at giving computers the
ability to understand and interpret human languages. In order to fulfill that goal,
a number of difficult tasks involving syntactic and semantic aspects of natural lan-
guage have been devised, such as text summarisation, sentiment analysis or relation
extraction. Among these tasks is the central problem of Natural Language Inference
(NLI), also known as Recognising Textual Entailment (RTE) (Dagan et al., 2006).

In NLI, the objective is to recognise whether a sentence p, called premise, entails
another sentence h, called hypothesis. Here, we define entailment as the relation
of information inclusion between the premise and hypothesis. That is, a sentence
p entails h if and only if all of the information given in h is also present in p. In
other words, a hypothesis is entailed by a premise if it can be inferred from it. An
example is given below:

p: Two boys are playing football in a grass field.
h: Children are playing outside.

For a human reader, recognising that p entails h in the example above is done
easily. Our brain is naturally able to determine that two boys are children, that a
grass field is outside, and that playing football is summarised by playing. However,
allowing a computer to perform the same task proves to be particularly hard. The
difficulty of NLI comes not only from the complex nature and ambiguity of natural
language, but also from the fact that the decision whether a sentence entails another
is based on human judgement and not some kind of formal logic. Indeed, in NLI
the relation linking a premise and hypothesis is usually chosen to be what someone
would decide upon reading the sentences. Hence, giving a system the ability to
detect entailment not only involves developing an understanding of the structure
and meaning of language, but also reproducing the line of thought of humans.
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Aurélien Coet Chapter 1. Introduction

If we consider the steps through which our brain went to recognise entailment in
the previous example, a number of complex tasks both on the syntactic and seman-
tic level can be identified. First, before the sub-parts of the two sentences can be
compared, they must be identified and matched. It is hence necessary to parse the
sentences into their subject, verb, object and complements, which implies having
some kind of knowledge of English grammar. Once this is done, the semantic rela-
tions that lie between the matched phrases then need to be recognised and composed
to make a decision about the sentence pair being observed. While entailment can
easily be inferred from some of those relations (e.g. playing football obviously entails
playing), it can also be very hard to infer from others (some advanced knowledge of
the world is necessary to be able to determine that a grass field is located outside).
Of course, the steps described above aren’t always necessary for a system to perform
well on NLI, but they illustrate the kind of challenges being faced when working on
the problem.

So far, we have only defined NLI as a binary classification task in which a choice
has to be made between entailment/no entailment based on a premise-hypothesis
pair. In most formulations of NLI problems, however, the actual objective isn’t
to distinguish between two but three different classes: entailment, contradiction
and neutral (S. Bowman et al., 2015; Conneau, Rinott, et al., 2018; Giampiccolo
et al., 2008; Marelli et al., 2014; Williams et al., 2018). This particular kind of
formulation makes the task at hand even harder, as not only information inclusion,
but also information exclusion need to be recognised.

Sentence pair Relation
p: A woman having a beverage.

h: Woman has a drink. entailment
p: Men are sitting at a table.

h: People standing near a table. contradiction
p: A man and his dog playing frisbee.
h: A man is having fun with his dog. neutral

Table 1.1: Examples of sentence pairs and their associated labels

Let’s consider the three examples of sentence pairs and their associated labels
in table 1.1. In order to properly classify them, a system must be able to identify
that beverage and drink are synonyms in the first pair, that standing and sitting
are antonyms in the second, and finally that playing frisbee doesn’t necessarily im-
ply having fun but doesn’t contradict it either. Furthermore, while the sentences
presented here do not illustrate it, premises and hypotheses in NLI tasks can some-
times contain grammatical errors and spelling mistakes, as they are usually written
by humans. This kind of errors shouldn’t prevent a system from correctly classifying
instances, which only adds to the difficulty of the problem.

In their MultiNLI paper (Williams et al., 2018), the authors argue that the
main difficulty in RTE is to extract meaningful representations for the sentences
that compose the premises and hypotheses of an NLI dataset, which makes the task
particularly interesting for representation and transfer learning. They also underline
how the large variety of linguistic phenomena that must be handled by models to
recognise entailment make it a good benchmark on NLU.

2
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1.2 Interest and Applications

Considering all the elements mentioned in the previous section, one can easily imag-
ine why natural language inference is such an important research interest in the field
of NLP. The complexity of the task and its semantic relevance make it an essential
aspect of NLU and a major problem that needs to be tackled in this area. The
interest of NLI however goes beyond academic research, and numerous applications
would benefit from the ability to perform inference on human language:

• In automatic text summarisation (Das and Martins, 2007), the objective is
to automatically produce a summary for a piece of text or a document. The
result should be short and remove any kind of redundancy from its source, but
without losing any of the important information it contains.

In such a situation, NLI can for example be used to detect if any sentence
of the summary can be inferred from the others (which would mean that it
is redundant) (Dagan et al., 2006), or to verify that the summary is well
entailed by the original text from which it was generated (to ensure that it
doesn’t include any additional or unrelated information) (Pasunuru et al.,
2017). Inference can also be used to directly address the task at hand, by
determining which sentences in the original document are entailed by other
larger chunks of text and extracting them to build a summary.

• Opinion summarisation (Condori and Pardo, 2017) is a task that has seen a
significant surge in interest over the past years, mainly due to the fast growth
of social networks and online shopping websites. The idea in opinion sum-
marisation is to analyse pieces of text written by different people on a specific
subject (such as product reviews on Amazon or political opinions on Twitter)
and to extract the general sentiments that are shared by multiple persons.

In this case, NLI can be used in a similar fashion as for automatic text sum-
marisation: a sentence or a piece of text that is entailed by multiple opinions
can be considered to summarise them well, as it contains no contradictory or
additional information.

• In reading comprehension (Hirschman et al., 1999), a system takes some doc-
ument as input and answers questions about it by searching for relevant infor-
mation in the text.

In this type of problem, NLI can be used to find the sentences in the source text
that can be inferred from the questions and using them to build answers. It can
also serve to choose the best answer between potential solutions by determining
which ones can be inferred from the questions with more confidence.

• Question answering is a task very similar to that of reading comprehension
where the objective is to answer open domain questions by using diverse
sources of information. In that situation, NLI can serve similar purposes as in
reading comprehension.

3
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1.3 Contents of the Document

Thanks to the relatively recent creation of large scale natural language inference
data sets (more on that in chapter 2) and the fast development of Neural Networks
(NNs) over the past few years, the NLU community has come up with numerous
Deep Learning (DL) models to address the problem of NLI. This paper proposes a
thorough investigation of such models.

The rest of this document is organised as follows:

• In chapter 2, we describe the most important tasks and data sets that have
been created for the problem of natural language inference, and we underline
the similarities and differences between them.

• In chapter 3, the most prominent deep learning models for NLI are presented,
and their concepts are briefly explained and compared. The chapter is di-
vided into three parts that correspond to different categories of DL models:
sentence vector-based models, sentence matching models and transfer learning
approaches.

• Finally, chapter 4 proposes a conclusion and final remarks on the subject of
natural language inference, as well as potential directions for further research.
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Chapter 2

NLI Tasks and Data Sets

Over the years, a number of tasks and datasets have been devised for the problem
of natural language inference. In this chapter, we describe the most prominent ones
and compare them.

2.1 The RTE Challenges

The PASCAL Network of Excellence Recognising Textual Entailment (RTE) chal-
lenge benchmark (Dagan et al., 2006) was the first to ever propose a unified task
on which to evaluate NLI models. The initial instance of the challenge (RTE-1) was
presented in 2005 during a workshop on textual entailment, and subsequent versions
were proposed from 2006 to 2011 (RTE-2 to RTE-7).

The RTE-1 challenge consists in a series of sentence pairs called T for text and
H for hypothesis and labelled with entailment/no entailment. The data is split in
a development and a test set which contain 567 and 800 pairs, respectively. The
objective of the challenge is to correctly predict, for each example in the test set,
whether H is entailed by T or not.

For the definition of the data set, human annotators were asked to write hy-
potheses H that were entailed or not by given texts T. The task was defined such
that a balanced proportion of entailment/no entailment examples were produced
and that the pairs weren’t too trivial to classify (for example, annotators were dis-
couraged from producing hypotheses that had high word overlaps with the texts).
Once the process of defining T /H pairs was over, cross-evaluation was performed
on the data by asking each annotator to label the sentences produced by the others.
Agreement was obtained in about 80% of cases, and all pairs for which no agreement
was reached were discarded from the final data set.

One specificity of the RTE challenge is that its data set definition was grounded
in a number of different applications from text processing. All the sentences corre-
sponding to texts for which hypotheses had to be written were selected among typical
examples encountered in tasks like Information Retrieval (IR), Reading Comprehen-
sion (RC) or Question Answering (QA), for example. The idea was that this would
allow to compare the performances of systems built with different objectives in mind

5
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on the shared task of predicting inference. Thanks to this, the sentences composing
the pairs in the RTE data set often consist in real life examples of natural language
and cover a wide range of topics. Examples of instances from RTE-1 (taken from
the original paper) are presented in table 2.1.

Text Hypothesis Application Label
Google files for its long
awaited IPO.

Google goes public. IR entailment

The Republic of Yemen is an
Arab, Islamic and indepen-
dent sovereign state whose in-
tegrity is inviolable, and no
part of which may be ceded.

The national lan-
guage of Yemen is
Arabic.

QA entailment

Table 2.1: Examples of sentence pairs from RTE-1 (Dagan et al., 2006)

After the first edition in 2005, new RTE benchmark data sets were proposed
every year from 2006 to 2011. While the size of the sets remained approximately
the same (a few hundreds of sentence pairs), the process for generating the data was
improved and refined at every iteration. Starting from 2008 (RTE-4) (Giampiccolo
et al., 2008), the challenge moved from a binary classification setup (entailment/no
entailment) to a three class problem (entailment/contradiction/unknown).

Because of the way they were manually built and labelled by human annotators,
it is generally accepted that the RTE benchmark data sets are of high quality.
However, their small size and lack of training set drastically limit their utility when
working on models that need to learn representations on large quantities of data,
such as deep neural networks or statistical models. Nevertheless, the data sets can
be used as test sets to evaluate DL models after having trained them on larger
corpora.

2.2 The SICK Data Set

The Sentences Involving Compositional Knowledge (SICK) data set (Marelli et al.,
2014) was proposed in 2014 at the SemEval-2014 international workshop on semantic
evaluation (Marco Marelli et al., 2014). The objective was to provide a shared bench-
mark for the evaluation of Compositional Distributional Semantic Models (CDSMs)
on two specific tasks: semantic relatedness and textual entailment.

SICK consists in 10,000 sentence pairs labelled with a score on a 5-point scale
for semantic relatedness and with entailment/contradiction/neutral for textual en-
tailment. In the context of SemEval-2014, the data was randomly split in a training
and a test set (each containing 50% of the pairs), and it was ensured that labels were
evenly distributed between the two halves. Participating systems were evaluated on
their ability to correctly predict the scores and labels associated to the examples in
the test set.

6
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To construct SICK, the authors extracted 2,000 image captions from the 8K
ImageFlickr1 and SemEval 2012 STS MSRVideo Description data sets and auto-
matically applied a number of transformations to them to obtain sentence pairs.
Once this was done, annotators manually labelled the pairs, and cross-evaluation
was performed to get gold labels. In the case of textual entailment, a majority vote
was used to determine the class associated to each pair. It was measured that, on
average, 84% of the participants agreed with the gold labels eventually selected.

The incentive for using image caption data sets as SICK’s basic building block
was that they provided sentences describing the same images but with different
formulations, which was especially interesting for the task of textual entailment.
Captions were also preferred because they often contain very few named entities
and many generic terms, which was important to the authors as they wanted to
avoid linguistic phenomena that weren’t expected to be accounted for by CDSMs
(such as named entity recognition) as much as possible.

Table 2.2 presents a few examples of sentence pairs from the SICK data set with
their associated gold label for textual entailment (examples were copied from the
SemEval-2014 paper).

Premise Hypothesis Label
Two teams are competing in
a football match

Two groups of people are
playing football

entailment

The brown horse is near a red
barrel at the rodeo

The brown horse is far from
a red barrel at the rodeo

contradiction

A man in a black jacket is do-
ing tricks on a motorbike

A person is riding the bicycle
on one wheel

neutral

Table 2.2: Examples of sentence pairs from SICK (Marco Marelli et al., 2014)

While SICK is larger than the RTE data sets by an order of magnitude, its size
is still too small to be used in the training of data intensive models such as NNs. In
their 2015 paper, Bowman et al. also note that the automatic aspect of the sentence
pairs generation introduced ”some spurious patterns into the data” (S. Bowman et
al., 2015). These elements, as well as the absence of other large scale, high quality
manually annotated resources, motivated the creation of the SNLI corpus.
Similarly to the RTE data sets and despite its small size, SICK can be used as a
benchmark for deep learning models that were trained on larger data sources.

2.3 The SNLI Corpus

In 2015, Bowman et al. presented the Stanford Natural Language Inference (SNLI)
corpus (S. Bowman et al., 2015), a large scale, manually generated and annotated
data set of sentence pairs labelled for textual entailment. With a total of 570,152
instances, the corpus was the first of its kind, and its impressive size sparked the
appearance of numerous deep learning models for natural language inference.

1http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
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The SNLI corpus is composed of pairs of sentences called premises and hypotheses
and labelled with one of the three classes entailment, contradiction and neutral.
The data is divided into a training set containing 550,152 sentence pairs and a
development and a test set containing 10,000 pairs each.

To build SNLI, the authors used the Amazon Mechanical Turk2 crowd-sourcing
platform. There, human workers were presented with series of premises and asked
to write three hypotheses for each of them: one that was entailed by the premise
(labelled with entailment), one that contradicted it (labelled with contradiction),
and one that wasn’t entailed by nor contradicted it (labelled with neutral). Specific
indications were given to the workers to guide them in their task (advices on sentence
length, complexity, etc.), as well as restrictions (it was for example forbidden to reuse
the same sentence twice). Examples of sentence pairs and their associated labels are
presented in table 2.3 (taken directly from the original paper).

Premise Hypothesis Label
A soccer game with multiple
males playing.

Some men are playing a
sport.

entailment

A man inspects the uniform
of a figure in some East Asian
country.

The man is sleeping contradiction

An older and younger man
smiling.

Two men are smiling and
laughing at the cats playing
on the floor.

neutral

Table 2.3: Examples of instances from the SNLI corpus (S. Bowman et al., 2015)

For the premises of SNLI, the authors extracted captions from the Flickr30k cor-
pus (Young et al., 2014), a crowd-sourced data set composed of image descriptions.
The motivation for using captions was that it helped solve the problem of event and
entity co-reference in sentence pairs.
Event/entity co-reference refers to the situation were the premise and hypothesis in
a pair mention some entity or event, but it cannot be trivially determined whether
they are the same or not. In the SNLI paper (S. Bowman et al., 2015), the example
of the sentences ”A boat sank in the Pacific ocean” and ”A boat sank in the Atlantic
ocean” is given. In that situation, it is not clear whether it should be considered
that the event being referred to is the same or not. If it is, the label associated to the
pair should be contradiction, as the location of the boat in the hypothesis is different
from the one in the premise. However, if the events are considered to be different,
the associated label should be neutral, because the sentences don’t contradict each
other since they refer to different boats and accidents.
Using captions helped solve this problem, as all events or entities in the premises be-
longed to some image on which the hypotheses written by the workers were supposed
to be based too. This meant that events and entities mentioned in the hypotheses
could always be assumed to be the same as those in the premises when labelling
pairs.

Once data collection was complete, an additional validation round was applied
on about 10% of the corpus. Instances from the data set were presented to the

2https://www.mturk.com/
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workers without their associated class, and they were asked to label them. Four
different persons validated each pair, and a majority vote was used to determine
the gold label. Sentence pairs for which no agreement was reached were kept in the
corpus but labelled with ”-”, to indicate that no gold label could be selected. The
rate of agreement during this phase was of 98%, with unanimity obtained in about
58% of cases.

Aside from the corpus described above, Bowman et al. also proposed several
models trained and tested on the data in their paper. The two best performing ones
were a lexicalised classifier and a simple Long Short Term Memory (LSTM) neural
network. These were defined as the baselines to beat when the paper was published.
Additionally, the LSTM was tested on the SICK corpus with transfer learning. The
authors first trained the model on SNLI and then fine-tuned it on SICK’s training
set. With this approach, they obtained new state-of-the-art results, which showed
the potential of the SNLI data set for training efficient deep learning models on the
task of recognising entailment.

Similarly to the RTE data sets, the manual construction and annotation of the
SNLI corpus by human workers make it a high quality resource. Its large size also
allows it to be particularly appropriate for uses in modern deep learning approaches
to NLI.
However, the corpus has its limitations. Williams et al. (2018) explain in their
MultiNLI paper that because all sentences in SNLI were build on a single type of
textual resource (namely image captions), they do not allow for good generalisation
on other kinds of texts and lack certain important linguistic phenomena (such as
temporal reasoning or modality, among other examples). These were some of the
reasons for the creation of the MultiNLI corpus.

2.4 The MultiNLI Corpus

The Multi-Genre Natural Language Inference (MultiNLI) corpus (Williams et al.,
2018) was created at the University of New York in 2017 to remedy the shortfalls
of SNLI. It consists in 432,702 pairs of sentences labelled for textual entailment and
covers a wide range of textual styles and topics. The data is split in a training
and development set that are available online3, as well as test sets that can only be
accessed through Kaggle competitions in unlabelled form45.

MultiNLI is very similar to SNLI both in its structure and in the way it was
constructed: the sentence pairs that compose it were produced through a crowd-
sourcing effort that followed the same protocol, and they have the same form.

The main difference between the two corpora is the type of textual resources that
were used to produce their premises. Compared to SNLI, many more types of text
were used for MultiNLI. More specifically, the authors extracted premises from ten
different types of sources written in English. Nine of them were part of the Open

3https://www.nyu.edu/projects/bowman/multinli/
4https://www.kaggle.com/c/multinli-matched-open-evaluation
5https://www.kaggle.com/c/multinli-mismatched-open-evaluation
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American National Corpus (OANC), which contains transcriptions of real world
conversations, reports, speeches, letters, non-fiction works, articles from magazines,
travel guides and short posts on linguistics for non-specialists. The tenth genre of
text used in MultiNLI was fiction and contained a compilation of open access works
written between 1912 and 2010, covering different styles such as science-fiction,
mystery or adventure.

One of the problems that Williams et al. identified in SNLI was that it was ”not
sufficiently demanding to serve as an effective benchmark for NLU” (Williams et
al., 2018). Hence, in order to make MultiNLI more difficult, they split its data such
that only five genres of text were covered in its training set, and its testing set was
divided in two categories: a matched set only containing premises extracted from the
same genres as the training set, and a more challenging mismatched set containing
premises from all ten genres selected during data collection. The insight was that
the matched set would allow to ”explicitly evaluate models [...] on the quality of
their sentence representations within the training domain”, whereas the mismatched
version would allow to test ”their ability to derive reasonable representations in
unfamiliar domains” (Williams et al., 2018).

Table 2.4 below presents some examples of sentence pairs extracted from the
MultiNLI corpus (taken from the data set’s official website6).

Text type Premise Hypothesis Label
Letters Your gift is appreciated

by each and every stu-
dent who will benefit
from your generosity.

Hundreds of students will
benefit from your gen-
erosity.

neutral

Telephone yes now you know if if
everybody like in August
when everybody’s on va-
cation or something we
can dress a little more ca-
sual or

August is a black out
month for vacations in
the company.

contradiction

9/11 report At the other end of Penn-
sylvania Avenue, people
began to line up for a
White House tour.

People formed a line at
the end of Pennsylvania
Avenue.

entailment

Table 2.4: Examples of instances from the MultiNLI corpus (Williams et al., 2018)

To verify that their corpus did indeed improve the difficulty compared to SNLI,
the authors of MultiNLI trained and tested several baselines on it, as well as the then
state of the art ESIM model (Chen, Zhu, Ling, Wei, et al., 2017a). They wrote their
own implementation of ESIM and tested it on SNLI, which yielded 86.7% accuracy
(meaning that the model correctly classified 86.7% of the instances it saw in SNLI’s
test set). On MultiNLI, their implementation only performed at 72.4% accuracy
on the matched set and 71.9% on the mismatched version, effectively proving that
their new corpus represented a greater challenge than SNLI for natural language
inference.

6https://www.nyu.edu/projects/bowman/multinli/
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While MultiNLI is now widely accepted as the de facto standard for training and
evaluating NLI models, the corpus is not devoid of flaws. In particular, two papers
published in 2018 (Gururangan et al., 2018; Poliak et al., 2018) showed that it was
possible to predict the labels associated to sentence pairs in SNLI and MultiNLI
with relatively high accuracy by solely looking at the hypotheses. The explanation
given by the two works to explain this phenomenon was that the corpora suffered
from annotation artifacts, such as specific sentence length or choices of words by the
annotators for given classes.

2.5 The Breaking NLI Data Set

In 2018, Glockner et al. proposed a new benchmark to evaluate whether the mod-
els trained to perform NLI were efficient at solving problems that involve lexical
inferences and world knowledge. The corpus, named the Breaking NLI data set
(Glockner et al., 2018), consists in only a test set of 8,193 sentence pairs and is
meant to be used to evaluate models previously trained on SNLI.

To build their data set, Glockner et al. extracted premises from SNLI’s training
set and applied automatic transformations on them to produce hypotheses where
only a single word has been replaced. Replacement words were chosen to generate
hypotheses that were either entailed by the selected premises or contradicted them
(though neutral examples were also obtained in some cases as a by-product).
After the sentence pairs and their associated label were obtained with the auto-
matic procedure, they were further validated by human annotators through a crowd-
sourced effort, to ensure their correctness. Examples of pairs and their labels are
provided in table 2.5 (directly taken from the paper).

Premise Hypothesis Label
The man is holding a saxo-
phone

The man is holding an elec-
tric guitar

contradiction

A little girl is very sad A little girl is very unhappy entailment
A couple drinking wine A couple drinking champagne neutral

Table 2.5: Examples of instances from the Breaking NLI data set (Glockner et al.,
2018)

Once they had completed data collection and validation, the authors evaluated a
number of models that performed well on SNLI and MultiNLI on their own test set.
All models performed significantly worse on their data, except for one: KIM (Chen,
Zhu, Ling, Inkpen, et al., 2018a), which makes use of external lexical information
to perform classification.

The results show that most models trained on the current best corpora for NLI
have poorer generalisation capability than was previously thought, and that further
improvements in the NLI task definition would be necessary to alleviate this problem.
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2.6 Other resources

In addition to the data sets mentioned in this chapter, other resources exist for the
task of recognising textual entailment. These won’t be discussed in depth here, as we
consider them of somewhat lesser relevance in the specific context of deep learning
for NLI. Nevertheless, we list them below for the sake of completeness:

• The denotation graph (Young et al., 2014) consists in a large hierarchical set
of sentences connected to each other through the relation of entailment.
As with the SICK data set, Bowman et al. explain in their SNLI paper (S.
Bowman et al., 2015) that the automatic generation of the denotation graph
makes it too noisy to be usable in the training of data intensive models.

• The Cross-lingual Natural Language Inference (XNLI) corpus (Conneau, Rinott,
et al., 2018) is a data set that extends the development and test sets of the
MultiNLI corpus with 7,500 human-annotated pairs of sentences in 15 different
languages.
While the pairs follow the exact same structure as those in the SNLI and
MultiNLI data sets, the primary focus of the XNLI corpus is not on recognis-
ing textual entailment, but rather on providing a strong benchmark for the
evaluation of systems on the task of cross-lingual natural language understand-
ing.

12



Chapter 3

Deep Learning Models for NLI

Since the release of the SNLI corpus in 2015, a wide array of deep learning models
have been devised for the task of natural language inference. Those models can
roughly be regrouped into three main categories: sentence vector-based models,
sentence matching models and transfer learning approaches. These are explored
into more detail in separate sections of this chapter.

3.1 Sentence Vector-Based Models

As mentioned in the MultiNLI paper (Williams et al., 2018), the wide variety of
linguistic phenomena covered by natural language inference not only makes it a good
benchmark for NLU, but also an excellent supervised task for the learning of sentence
embeddings (vector representations that capture the semantics of sentences). For this
reason, there exist a large number of models focused on learning general sentence
representations from NLI in the literature. These models are often referred to as
sentence vector-based.

The general architecture of sentence vector-based models consists in two main
components: a sentence encoder (or sentence model) and a classifier (or matching
layer). The task of the sentence encoder is to learn generic representations for the
premises and hypotheses in some NLI problem, and the classifier then has to some-
how combine these representations to predict the relationship that exists between
the two sentences. This structure is often referred to as the Siamese architecture
(Bromley et al., 1994), represented in figure 3.1. Note that the two sentence en-
coders in the image share the same weights (the same network is applied both to
the premise and hypothesis).

All sentence vector-based models presented in this section use the same type of
classifier to perform predictions on NLI. The main difference between them thus
lies in the way sentence representations are learned by the encoder. Approaches
to sentence encoding can be subdivided into three principal categories: sequential,
tree-based and self attention-based.

13
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Figure 3.1: Representation of the Siamese architecture for NLI

3.1.1 Classification Layer

As mentioned above, the classification layer used by all the sentence vector-based
models presented in this document is virtually the same (with only hyper-parameters
such as layers size varying). The architecture, first introduced in a paper by Mou
et al. (2015), is illustrated in figure 3.2.

Figure 3.2: Classifier architecture in sentence vector-based models

In the figure, h1 and h2 are vector representations learned by a model’s sentence
encoder for the premise and hypothesis in some NLI task. These vector repre-
sentations, as well as the element-wise product and difference between them, are
concatenated into a single vector m, which is then passed through a Multi-Layer
Perceptron (MLP). To associate a probability to each possible class in the NLI task,
a softmax function is applied on the output of the MLP.

3.1.2 Sequential Encoders

Sequential sentence encoders are models that use Recurrent Neural Networks (RNNs)
to learn representations for sentences. RNNs are a kind of neural network specif-
ically designed to process sequential data in time steps. They read elements in
sequences (such as words in sentences) one by one and keep some form of memory
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between steps. This allows them to capture information about the relationships that
exist between elements in a sequence, which makes them particularly appropriate
for working on natural language sentences. Different types of RNNs include plain
RNNs, Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM) net-
works. A good introduction on RNNs, and more specifically LSTMs, can be found
on Christopher Olah’s blog1.

In the paper ”Supervised Learning of Universal Sentence Representations from
Natural Language Inference Data”, Conneau, Kiela, et al. (2017) investigate several
architectures involving RNNs for sentence encoding. In particular, they propose in a
first approach to encode sentences by passing them through a unidirectional, single-
layer GRU or LSTM network and taking the final state of the RNN as representation.
In a second proposition, a bidirectional LSTM (bi-LSTM) is used, and max or
average pooling is applied over each dimension of the network’s hidden states to
extract a fixed-length vector for a sentence.

Subsequent works by Nie and Bansal (2017) and Talman et al. (2018) propose
models using stacked bi-LSTMs with shortcut connections and max pooling over the
output to encode sentences. The general architecture of the models is illustrated
in figure 3.3. There are only small differences between the propositions in the two
papers. Nie and Bansal pass both the initial word embeddings and the output of
each stacked layer to the next layers with shortcut connections, and they apply max
pooling only on the result of the last bi-LSTM. In the model proposed by Talman
et al., only the word embeddings are shortcut, but max pooling is applied on the
output of each stacked layer, and the results are concatenated into a single sentence
representation.

Figure 3.3: k-layers stacked bi-LSTMs with shortcut connections for sentence en-
coding

1http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Table 3.1 summarises the reported accuracies of the models presented in this
section on SNLI and MultiNLI’s test sets.

Model SNLI MultiNLI-m MultiNLI-mm
LSTM (Conneau, Kiela, et al., 2017) 80.7 - -
GRU (Conneau, Kiela, et al., 2017) 81.8 - -
Bi-LSTM avg. (Conneau, Kiela, et al., 2017) 78.2 - -
Bi-LSTM max. (Conneau, Kiela, et al., 2017) 84.5 - -
Shortcut-stacked encoder (Nie and Bansal, 2017) 86.1 74.6 73.6
HBMP (Talman et al., 2018) 86.6 73.7 73.0

Table 3.1: Reported accuracy (%) of sequential sentence encoders on SNLI and
MultiNLI’s matched (MultiNLI-m) and mismatched (MultiNLI-mm) test sets

3.1.3 Tree-based Encoders

Tree-based encoders make use of the parse structure of sentences to learn their rep-
resentations. This means that syntactic information is explicitly taken into account
by the model to produce sentence embeddings.

The Tree-based Convolutional Neural Network (TBCNN), presented by Mou et
al. (2015), is one of the first tree-based sentence encoders ever proposed for RTE.
The general idea of the model is to apply a Convolutional Neural Network (CNN)
over the dependency parse tree of a sentence to learn a representation for it.
More specifically, Mou et al. propose in their paper to slide a set of two-layers
sub-tree feature detectors over the parse tree of a sentence to learn feature maps
for each word in it. The feature detectors are convolution filters applied on every
sub-tree in the dependency parse tree of a sentence. They are each specialised to
capture information about a specific grammatical relation between words. Once the
detectors have been applied, the resulting feature maps are combined together by
applying a max pooling operation over each of their dimensions, and then passing
the result through some feed-forward neural network. This produces a fixed-length
vector representation for a sentence.

Aside from CNNs, other types of neural networks can be applied on the parse
structure of sentences to encode them. This is exactly what is proposed in two works
by S. R. Bowman et al. (2016) and Choi et al. (2017), which use Tree-structured
Recursive Neural Networks (TreeRNNs) to learn sentence representations.

TreeRNNs are a special type of RNN that work on binary parse trees and prop-
agate information upstream along them. This particular approach is interesting
for sentence encoding because it captures both syntactic and semantic information
over a whole sequence’s tree from the bottom up. This makes it possible to take
the output of the network at the top of a sentence’s tree and use it as an efficient
representation for it.

S. R. Bowman et al. (2016) introduce the Stack-augmented Parser-Interpreter
Neural Network (SPINN). Inspired by shift-reduce parsing, SPINN is capable of
both building the binary parse tree of a sentence and processing it in a single left-
to-right pass over its tokens.
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The same is true of the model proposed by Choi et al. (2017), which introduces a
new kind of TreeRNN called Gumbel Tree-LSTM to learn the parse structure of a
sentence as it is being read.
This capability of the two models to parse sentences as they learn representations for
them makes them particularly fast, because they only need one pass over a sentence
to encode it, and they can work on batches of sentences instead of single sequences
at a time (which is a big limitation of other TreeRNNs).

Table 3.2 summarises the reported classification accuracies of the tree-based sen-
tence encoders presented in this section on SNLI’s test set. No results are available
on MultiNLI for those models.

Model Accuracy (%)
TBCNN (Mou et al., 2015) 82.1
SPINN (S. R. Bowman et al., 2016) 83.2
Gumbel Tree-LSTM (Choi et al., 2017) 86.0

Table 3.2: Reported accuracy of tree-based sentence encoders on SNLI’s test set

3.1.4 Self Attention-based Encoders

As explained by Shen, Zhou, Long, Jiang, S. Pan, et al. (2017), attention is a special
mechanism used to compute an alignment score between the elements of a sequence
and some query. In particular, given a vector q representing a query and a sequence
of vectors x = [x1, x2, ..., xn], an attention function a(xi, q) computes the degree of
similarity or dependency between each xi ∈ x and q. A softmax function is then
applied on the resulting scores to produce a probability distribution describing how
likely each element xi is to contribute to the information in the query q.

Typically, the attention scores computed for a sequence x are used in some
weighted operation involving the xi ∈ x (such as a sum) to build a summary of the
relationship between x and q. In the specific case of sentence encoding, this idea is
applied on the words of a sentence to learn a general representation for it (which can
be seen as a summary of the sentence’s meaning). The name self attention (or inner
attention) comes from the fact that attention is computed on the same sentence that
is being encoded, as opposed to other situations in NLP where the mechanism is
used on pairs of sentences to extract the dependencies between their elements (more
on this in section 3.2).

There are multiple ways of using self attention to encode sentences’ meanings
in vector representations. Y. Liu et al. (2016) were among the first to do it in
the context of NLI. In their paper, they first pass the n word embeddings ei of a
sentence s through a bi-LSTM, which produces hidden states hi, i ∈ [1, .., n]. They
then apply average pooling on the hi and use a feedforward network to compute
the attention between the resulting vector and the hidden states of the bi-LSTM.
This produces weights αi that are used in a weighted sum of the hi to get a vector
representation m for the sentence s. The architecture is illustrated in figure 3.4.
If we map Liu et al.’s attention mechanism to the one described earlier in this
section, we see that the result of average pooling corresponds to the query vector q,
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the bi-LSTM’s hidden states to the xi, and the feed-forward network to the attention
function a(xi, q).

Figure 3.4: Inner attention mechanism (Y. Liu et al., 2016)

Lin et al. (2017) and Conneau, Kiela, et al. (2017) are inspired by the attention
mechanism described by Y. Liu et al. (2016), but they propose to use multiple at-
tentions computed between the bi-LSTM’s hidden states and learned query vectors,
instead of a single attention with the result of average pooling as query. To force
the attentions to focus on different parts of a sentence, a special penalisation term
is used.

Shen, Zhou, Long, Jiang, S. Pan, et al. (2017) further develop the idea in their
Directional Self Attention Network (DiSAN), which introduces the concept of multi-
dimensional self attention, a special form of attention where weights are computed
for each dimension of a vector (producing weight vectors instead of scalar attention
scores). In a later publication, Shen, Zhou, Long, Jiang, Sen Wang, et al. (2018)
present the Reinforced Self Attention Network (ReSAN), an improved DiSAN model
that combines hard and soft attention mechanisms to learn representations of sen-
tences. Soft attention refers to the situation where a probability distribution over
the elements of a sequence is produced (i.e. continuous attention weights), whereas
hard attention computes binary attention weights (selecting a subset of the elements
in a sequence).

Chen, Zhu, Ling, Wei, et al. (2017b) develop a model based on gated attention
(a form of attention using the bi-LSTM’s gates in its computation), and Chen, Ling,
et al. (2018) use several forms of multi-dimensional self attention with generalised
pooling. In other work, Munkhdalai and Yu (2017) propose a new neural architec-
ture based on memory and self attention for sentence encoding, and Yoon et al.
(2018) apply self attention on top of a CNN in their Dynamic Self Attention (DSA)
network to learn representations. Finally, Im and Cho (2017) use the Transformer
architecture (Vaswani et al., 2017) and a form of attention sensitive to the distance
between words in their Distance-based Self Attention Network.
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Table 3.3 summarises the reported accuracies of self attention-based models on
the SNLI and MultiNLI test sets.

Model SNLI MultiNLI-m MultiNLI-mm
Inner attention (Y. Liu et al., 2016) 83.3 - -
Neural Semantic Encoder (Munkhdalai and Yu, 2017) 84.6 - -
Structured Self Attentive Network (Lin et al., 2017) 84.4 - -
Inner attention (Conneau, Kiela, et al., 2017) 82.5 - -
Gated attention bi-LSTM (Chen, Zhu, Ling, Wei, et al., 2017b) 85.5 72.8 73.6
DiSAN (Shen, Zhou, Long, Jiang, S. Pan, et al., 2017) 85.6 71.0 71.4
Distance-based Self Attention Network (Im and Cho, 2017) 86.3 74.1 72.9
ReSAN (Shen, Zhou, Long, Jiang, Sen Wang, et al., 2018) 86.3 - -
bi-LSTM generalised pooling (Chen, Ling, et al., 2018) 86.6 73.8 74.0
DSA (Yoon et al., 2018) 87.4 - -

Table 3.3: Reported accuracy (%) of self attention-based sentence encoders on SNLI
and MultiNLI’s matched (MultiNLI-m) and mismatched (MultiNLI-mm) test sets

3.2 Sentence Matching Models

Natural language inference is a task that involves comparing pairs of sentences to
predict the relation linking them. This means that interactions between premises
and hypotheses play an essential role in the decision whether they entail each other
or not. However, because the goal of sentence vector-based models is to learn rep-
resentations for single sentences that can be used in downstream tasks, they do not
capture any information about interactions between sentence pairs to recognise en-
tailment.
Sentence matching models, on the contrary, do exactly that. While this makes them
less applicable in transfer learning, it gives them a clear advantage on recognising
textual entailment, as is reflected by their classification accuracy on NLI tasks.

There are multiple ways of modelling interactions between sentences, but almost
all of them involve attention mechanisms similar to the one described in section
3.1.4.
Rockstäschel et al. were probably the first to propose a deep sentence matching
model for NLI. The system they describe in their paper ”Reasoning about Entailment
with Neural Attention” (Rocktäschel et al., 2015) uses two LSTMs with word-by-
word attention to learn a representation of the interactions between a premise and
a hypothesis.
The architecture of the model is illustrated in figure 3.5. In the image, the epi , i ∈
[1, ..., l] are word embeddings for the premise, ehj , j ∈ [1, ...,m] word embeddings
for the hypothesis, LSTMp and LSTMh two LSTMs to encode the premise and
hypothesis respectively, hpi the hidden states of LSTMp and hhj those of LSTMh.
The authors use a feed-forward network to compute attention between each hhj (the
encoded words of the hypothesis) and all the hpi (the encoded words of the premise)
to produce attention weights αj

i . For each hhj , an attention vector rj is then obtained

by computing a weighted sum aj of the attended hpi with the αj
i (aj =

∑l
i=1 α

j
ih

p
i )

and merging it with rj−1, the attention vector computed for the previous word in
the hypothesis (rj = aj + tanh(W rrj−1), W

r is a learnable parameter). Finally, the
last attention vector rm is taken as a representation of all the interactions between
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the premise and hypothesis and merged with the last hidden state hhm of LSTMh.
The result is passed through a classification layer with softmax activation to predict
the label associated to the pair.

Figure 3.5: Word-by-word attention mechanism (Rocktäschel et al., 2015)

In subsequent work, Shuohang Wang and Jiang (2016), Sha et al. (2016) and
P. Liu et al. (2016) are inspired by the proposition of Rockstäschel et al. to build
their own LSTMs with word-by-word attention for NLI.
Shuohang Wang and Jiang (2016) reuse Rockstäschel et al’s architecture, but they
pass each hhj and aj through an additional layer they call match-LSTM (mLSTM)
to merge their representations. They then use the last hidden state of the mLSTM
for classification.
Sha et al. (2016) first encode the premise with a regular LSTM network and concate-
nate its hidden states in a matrix P . Then, they pass P and the word embeddings
of the hypothesis through a special LSTM called re-read LSTM (rLSTM), which
combines the encoded words of the hypothesis with a weighted sum of the vectors
in P . The weights of the sum are computed with attention. They apply average
pooling on the outputs of the rLSTM and use the result for classification.
P. Liu et al. (2016) propose something slightly different with their coupled-LSTMs
(c-LSTMs), two inter-dependent LSTMs that encode the premise and hypothesis
in a pair by using both their own previous hidden states and the ones from the
other LSTM at different time steps to produce outputs. The authors stack multiple
coupled-LSTM on top of each other to get their best performance on NLI with this
approach.

In the paper ”A Decomposable Attention Model for Natural Language Inference”,
Parikh et al. (2016) propose to apply neural attention directly on the word embed-
dings of a sentence pair to perform classification. First, they use a feed-forward
network to compute attention scores between each word embedding in the premise,
denoted epi , i ∈ [1, .., l], and those in the hypothesis, denoted ehj , j ∈ [1, ..,m]. A
softmax is applied on the result, which produces attention weights αij that are used
to compute, for each word epi in the premise, a weighted sum of the words in the
hypothesis ai =

∑m
j=1 αije

h
j , and the inverse for each word ehj in the hypothesis,

bj =
∑l

i=1 αije
p
i . Then, each pair (epi , ai) and (ehj , bj) is concatenated and passed
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through a feed-forward network G to produce comparison vectors vpi = G([epi ; ai])
and vhj = G([ehj ; bj]). Finally, the vpi and vhj are aggregated by summing them,

vp =
∑l

i=1 v
p
i , vh =

∑m
j=1 v

h
j , and the results are concatenated and passed through

a final feed-forward network for classification, ŷ = F ([vp; vh]). The complete archi-
tecture is called attend-compare-aggregate and is illustrated in figure 3.6.

Figure 3.6: Attend-compare-aggregate architecture (Parikh et al., 2016)

The idea of composing attention both from the premise to the hypothesis and
from the hypothesis to the premise was reused in numerous models after the pub-
lication by Parikh et al. in 2016. A famous example is the Enhanced Sequential
Inference Model (ESIM) (Chen, Zhu, Ling, Wei, et al., 2017a), depicted in figure
3.7. The model first encodes the word embeddings of the premise and hypothesis
with a bi-LSTM, and it computes attention between the outputs in the same way as
Parikh et al. to produce ”attention vectors” ai and bj. Then, each encoded word hpi
of the premise is concatenated with its corresponding ai, as well as with the element-
wise difference and product with it, giving a vector upi = [hpi ; ai;h

p
i − ai;h

p
i · ai]. The

same is done with the hhj and bj: u
h
j = [hhj ; bj;h

h
j − bj;hhj · bj]. The upi and uhj are

passed through a feed-forward layer to reduce their dimensionality (not shown in
the figure for readability), and then through a second bi-LSTM, outputting hidden
states vpi and vhj for the premise and hypothesis, respectively. Finally, the vectors
are aggregated through average and max pooling, and the results concatenated and
passed through a MLP with a softmax on the output for classification.
Chen et al. also propose in their paper to use a tree-LSTM along with ESIM to
take syntactic information into account when predicting inference, which slightly
improves the model’s performance.

Z. Wang et al. (2017) present the Bilateral Multi-Perspective Matching (BiMPM)
network, a model essentially following the same architecture as ESIM, with differ-
ences only in the way attention is computed and composed.
Tay et al. follow with another model called Comprop Alignment-Factorised Encoders
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(CAFE) (Tay et al., 2018), which has a similar architecture as ESIM but composes
attention information differently, with an alignment factorisation layer.
The Dependant Reading Bidirectional LSTM (DR-BiLSTM) model from Ghaeini et
al. (2018) also works the same way as ESIM, with the exception that it uses special
inter-dependant bi-LSTMs for the encoding of the premise and hypothesis instead
of regular ones.
Finally, Kim et al.’s Densely-connected Recurrent and Co-attentive neural Network
(DRCN) (Kim et al., 2018) adopts an architecture similar to ESIM’s, but it stacks
multiple RNNs and attention layers on top of each other. Auto-ecoders are used
between stacked layers to reduce the representation’s dimensionality (since it grows
with the number of layers). Figure 3.8, taken from the original paper, illustrates the
concepts of the model. The top-right part of the image shows the specific number
and disposition of layers used by the authors in the publication.

Figure 3.7: ESIM architecture (Chen, Zhu, Ling, Wei, et al., 2017a)

In the Densely Interactive Inference Network (DIIN) (Gong et al., 2018), the
authors use a highway network followed by a self attention mechanism to encode
the premise and hypothesis of a sentence pair. Highway networks (Srivastava et
al., 2015) are a special kind of gated feed-forward networks specifically designed to
be deeper than regular multi-layer perceptrons. After the encoding step, a form
of multi-dimensional attention is computed between the obtained representations,
producing a 3-dimensional attention matrix. A convolutional feature extractor is
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Figure 3.8: DRCN architecture (Kim et al., 2018)

then applied on it to retrieve information about interactions between the sentences,
and the result is flattened and passed through a MLP with softmax to predict the
class associated to the pair of inputs.

Only very few papers investigate the use of external knowledge for NLI. All of
them propose to use sentence matching models with the inclusion of some outside
information to improve their performance on recognising entailment.
Chen, Zhu, Ling, Inkpen, et al. (2018b) introduce the Knowledge-based Inference
Model (KIM), a model that follows the general architecture of ESIM, but where
information about the lexical relations between words in the premise and hypoth-
esis is additionally used to improve the model’s performance. In particular, lexical
relations between words such as synonymy, hypernymy or antonymy are extracted
from Wordnet (Miller, 1995) and used in the attention layer.
In another paper, Zhang et al. (2018) propose to use Semantic Role Labelling (SRL),
a task where the objective is to predict the predicate-argument relations in a sen-
tence, to improve an existing model on NLI. The authors apply SRL on premises and
hypotheses to learn the semantic roles for the words they contain, and the results are
used as additional information in the ESIM model, which improves its performance.

Table 3.4 summarises the reported accuracies of all the sentence matching models
presented in this section on SNLI and MultiNLI’s test sets.

3.3 Transfer Learning Approaches

In transfer learning, models that were first trained on some task are reused and
fine-tuned to perform other tasks. The approach is often used in situations where
resources are very scarce for a given problem, but there are large amounts of training
data available for some other, related task. In those cases, a model is first trained on
the objective where lots of data are available, and its parameters are then fine-tuned
for the problem with fewer resources.

Over the past years, there have been numerous examples of successful appli-
cations of transfer learning to deep learning models. While earlier examples have
mostly been in computer vision (thanks to the release of the huge ImageNet data
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Model SNLI MultiNLI-m MultiNLI-mm
Word-by-word attention (Rocktäschel et al., 2015) 83.5 - -
Match-LSTM (Shuohang Wang and Jiang, 2016) 86.1 - -
rLSTM (Sha et al., 2016) 87.5 - -
Stacked TC-LSTMs (P. Liu et al., 2016)) 85.1 - -
Attend-Compare-Aggregate (Parikh et al., 2016) 86.3 - -
ESIM (Chen, Zhu, Ling, Wei, et al., 2017a) 88.0 76.8 75.8
ESIM + Tree-LSTM (Chen, Zhu, Ling, Wei, et al., 2017a) 88.6 - -
BiMPM (Z. Wang et al., 2017) 87.5 - -
CAFE (Tay et al., 2018) 88.5 78.7 77.9
DR-BiLSTM (Ghaeini et al., 2018) 88.9 - -
DRCN (Kim et al., 2018) 88.9 80.6 79.5
DIIN (Gong et al., 2018) 88.0 80.0 78.7
KIM (Chen, Zhu, Ling, Inkpen, et al., 2018b) 88.6 77.2 76.4
SRL (Zhang et al., 2018) 89.1 - -

Table 3.4: Reported accuracy (%) of sentence matching models on SNLI and
MultiNLI’s matched (MultiNLI-m) and mismatched (MultiNLI-mm) test sets

set (Russakovsky et al., 2015)), more recent applications to NLP tasks have also
shown to provide impressive performance gains.

In NLP, almost unlimited resources are available in the form of unlabelled, free
text. This data can be used in the unsupervised training of deep learning models
to capture information about the general form and structure of language. Models
trained in this manner can then be later fine-tuned for more specific tasks requiring
human annotated resources, which are much more difficult to produce and hence
much scarcer.
Transfer learning can also be used between supervised tasks that share similarities
or are somehow complementary.

In the specific case of NLI, although reasonably large quantities of data are
available for training, the application of transfer learning has allowed models to
reach significantly higher classification accuracy than the previous state-of-the-art
on famous data sets like SNLI or MultiNLI. These results show that pre-training
models on unsupervised tasks to allow them to better model language seems to also
make them more efficient on natural language understanding.
In the cases where transfer learning is used between natural language inference and
other supervised tasks, performance improvements show that information about
linguistic phenomena captured in other tasks and overlooked by NLI can help models
recognise entailment with more accuracy.

3.3.1 Transfer Learning from Supervised Tasks

McCann et al. (2017) propose to apply transfer learning between Machine Transla-
tion (MT) and other NLP problems by learning special Context Vectors (CoVe) that
can be reused in downstream tasks. The general idea of the model, illustrated in
figure 3.9 (taken directly from McCann et al.’s paper), is to first train the sentence
encoder of a MT task to learn context sensitive representations for words so they
can be translated accurately, and then reuse it in other downstream tasks to encode
input words.
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The insight behind this approach is that, in many NLP problems, models need
representations for words that are specific to the contexts in which they appear to
perform well. ”Traditional” word embedding methods, however, only produce single
vectors for words that are context-independent.
In machine translation, it is only after word embeddings are passed through a
model’s encoder that their representations become context specific. Because MT
is a problem where large quantities of parallel data are available for training, it also
happens to be well adapted for transfer learning. This justified the use of a pre-
trained MT encoder to contextualise words in dowstream tasks.
For the particular problem of natural language inference, McCann et al. show in
their paper that using CoVe improves the accuracy of the model they train on the
SNLI corpus.

Figure 3.9: Transfer learning in CoVe (McCann et al., 2017)

With the Discourse Marker Augmented Network (DMAN), B. Pan et al. (2018)
propose to apply transfer learning between the supervised task of Discourse Marker
Prediction (DMP) and NLI.
In DMP, the objective is to predict the discourse marker which connects the two
halves S1 and S2 of a sentence S. Discourse markers are words that carry informa-
tion about the relation between parts of a sentence, such as ”and”, ”or” or ”but”.
The authors of DMAN underline in their paper how these words ”intuitively corre-
spond to the intent of NLI, such as ’but’ to contradiction, ’so’ to entailment, etc.”
(B. Pan et al., 2018), which is why they choose to transfer knowledge from DMP
to RTE. To do so, they first train a sentence encoder on a DMP task, and then
integrate it in a model specifically designed to recognise entailment. The sentence
encoder’s parameters are fine-tuned during training on the NLI task. With this
approach, new state-of-the-art results were obtained at the time of publication.

3.3.2 Transfer Learning from Unsupervised Tasks

Language modelling is a common task in NLP where systems called Language Models
(LMs) are trained to learn about the structure of language in an unsupervised man-
ner. Usually, the objective for LMs is to predict the probability of the next word in
a sentence given the previous ones. Formally, if s = [w1, w2, ..., wn] is a sentence of n
words wi, the goal of a language model is to predict P (wi|w1, ..., wi−1),∀i ∈ [1, ..., n].
Modern LMs learn to predict such probabilities statistically on large corpora of unla-
belled data, and the current state-of-the-art is obtained with deep neural networks.
It is generally accepted that, with sufficient amounts of data available for training,
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LMs are able to learn good representations for language. Since unsupervised text
exists in almost unlimited quantities, this makes language modelling particularly
appropriate for transfer learning.

Peters et al. (2018) propose in their paper ”Deep Contextualised Word Repre-
sentations” to use transfer learning to contextualise word vectors in NLP tasks.
Their approach to transfer knowledge from one task to the other is similar to Mc-
Cann et al.’s with CoVe: an encoder is first trained on some particular task to
contextualise word embeddings, and it is then integrated in other models to encode
their input words. However, the task used by Peters et al. for pre-training is very
different from the one in CoVe.
In their Embeddings from Language Models (ELMo), Peters et al. first train a deep
bidirectional Language Model (biLM) on some unsupervised language modelling task
and then use a linear combination of the biLM’s internal states to represent input
words in downstream tasks.
ELMo’s authors show that using a combination of the biLM’s internal states pro-
duces richer word representations than simply taking the network’s output, for ex-
ample, because different layers of a biLM capture different levels of information
about language (lower layers are often more focused on structure and syntax, while
layers at the top usually learn about meaning).
When they integrate ELMo in existing models for various NLP tasks, and in par-
ticular the well-known ESIM for NLI, Peters et al. report increases in classification
accuracy, justifying their approach.

In the paper ”Improving Language Understanding by Generative Pre-Training”
(Radford et al., 2018), the authors present the Generative Pre-training Transformer
(GPT), a language model based on the transformer architecture (Vaswani et al.,
2017).
In order to apply transfer learning, the GPT is first trained on the language mod-
elling objective presented in the first paragraph of this section with unlabelled data,
and it is later fine-tuned for various natural language understanding tasks. Figure
3.10 (taken from the GPT paper) illustrates a high-level view of the model’s archi-
tecture on the left, as well as a representation of the way the inputs for different tasks
are modified to fine-tune GPT on the right. In the particular case of entailment, the
premise and hypothesis of a NLI task are concatenated into a single sequence (sep-
arated by special delimiters), the result is passed through the transformer language
model, and the model’s final output is used as input in a linear classification layer.
With this approach, Radford et al. manage to obtain new state-of-the-art result at
the time of publication.

Devlin et al. (2018) make the observation that because Radford et al.’s GPT
uses a regular language modelling objective during pre-training, the representations
it learns are not bidirectional, which limits their representational power. Indeed, be-
cause the ”traditional” objective of a language model is to predict the next word in
a sentence based on the ones it’s already seen, truly bidirectional models cannot be
used for this task, as they have already seen the next word in a sentence at any time
step, which makes predictions trivial and prevents them from learning anything.
While bidirectionality can be mimicked with the combination of two separate left-
to-right and right-to-left LMs (as is done in ELMo), Devlin et al. argue that this
approach is sub-optimal compared to a truly bidirectional model. For this rea-
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Figure 3.10: Architecture of the GPT and transfer to other tasks (Radford et al.,
2018)

son, they introduce the Bidirectional Encoder Representations from Transformers
(BERT), a fully bidirectional language model for transfer learning in NLU.

In order to make bidirectionality possible in BERT, Devlin et al. devise a new
language modelling objective: the Masked Language Model (MLM). In the MLM,
random words in a language model’s input are masked, and the goal is to predict
them. This method makes bidirectionality possible, because models don’t know the
words that are masked in advance, even if they have already seen them in the input.
In addition to the MLM, Devlin et al. also introduce a next sentence prediction task
during the pre-training of their model. In this task, pairs of sentence are extracted
from the language model’s training data, with part of them following each other in
the text, and others selected at random. The goal for the model is then to predict
if the sentences it receives as input follow each other in the text or not.

For NLI, transfer learning with BERT is done as illustrated in figure 3.11 (taken
directly from the original paper). The premise and hypothesis in a sentence pair are
concatenated (with a separator token between them), and a special class ([CLS])
token is appended at the beginning of the sequence. For classification, an additional
output layer is integrated at the end of the model to predict the relation between
the sentences passed as input.

In order to make comparison with the work by Radford et al. possible, Devlin et
al. propose a version of BERT with approximately the same number of parameters
as the GPT, named BERTBASE. In addition, another larger version of the model
called BERTLARGE is trained and tested. Both significantly outperform all other
existing models, and BERTLARGE provides impressive new state-of-the-art results
which show the power of transfer learning from bidirectional language models to
NLU.

Table 3.5 summarises the reported accuracies of the models presented in this
section on SNLI and MultiNLI.
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Figure 3.11: Transfer learning to NLI with BERT (Devlin et al., 2018)

Model SNLI MultiNLI-m MultiNLI-mm
CoVe (McCann et al., 2017) 88.1 - -
DMAN (B. Pan et al., 2018) 88.8 78.9 78.2
ELMo (Peters et al., 2018) 88.7 - -
GPT (Radford et al., 2018) 89.9 82.1 81.4
BERTBASE (Devlin et al., 2018) - 84.6 83.4
BERTLARGE (Devlin et al., 2018) - 86.7 85.9

Table 3.5: Reported accuracy (%) of transfer learning approaches on SNLI and
MultiNLI’s matched (MultiNLI-m) and mismatched (MultiNLI-mm) test sets
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Chapter 4

Conclusion

In this paper, we investigated existing approaches to the problem of natural language
inference, an essential aspect of natural language understanding.

In the first chapter of this document, the crux of the problem was explained in
detail and its importance was made clear through examples of applications where
the ability to perform natural language inference is essential.

In chapter 2, we listed and detailed existing tasks and data sets for NLI. In
particular, we saw that the release of the large scale, high quality SNLI corpus in
2015 by Bowman et al. paved the way for numerous deep learning approaches to
natural language inference. We also noted how the wider coverage MultiNLI corpus
pushed the quality of available data even further and was adopted as the new de facto
standard to train and test models for recognising entailment. We finally mentioned
how existing data sets were still imperfect and suffered from annotation artifacts
that reduced the generalisation power of models trained on them.

In chapter 3, we thoroughly explored the different categories of models that
exist in the literature for the task of recognising textual entailment. We saw how
the wide range of linguistic phenomena covered by NLI made it an interesting task to
learn sentence embeddings for other NLP tasks, which motivated the development of
many sentence vector-based models trained on entailment data. We also underlined
how the interactions between premises and hypotheses played an important role in
recognising entailment, which justified the design of many sentence matching models
based on attention mechanisms between pairs. Finally, we observed that recent
approaches to NLI using transfer learning yielded impressive new state-of-the-art
results on the task.

With all of the elements above in mind, we believe that further works on NLI
should focus both on improving the definition of the task and on the design of new
models to solve it.
In terms of task definition, new data sets with stricter rules for the writing of
hypotheses could be developed in order to avoid annotation artifacts and to allow
models to learn more general representations.
Regarding the design of new models, we have seen in this document’s third chapter
that only very little work had been done to investigate the use of external knowledge
and lexical level information (i.e. lexical entailment) in deep learning models for NLI.
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Further works should therefore try to include this type of information into existing
models to assess if it can improve performance on the task.
Finally, with the excellent results obtained on existing data sets thanks to transfer
learning from large scale language models, we expect that research on the topic of
RTE will mostly focus on similar approaches in the near future.
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Phil Blunsom (2015). “Reasoning about Entailment with Neural Attention”. In:
CoRR abs/1509.06664. arXiv: 1509.06664. url: http://arxiv.org/abs/

1509.06664.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander
C. Berg, and Li Fei-Fei (2015). “ImageNet Large Scale Visual Recognition Chal-
lenge”. In: International Journal of Computer Vision 115.3, pp. 211–252. issn:
1573-1405. doi: 10.1007/s11263-015-0816-y. url: https://doi.org/10.
1007/s11263-015-0816-y.

Sha, Lei, Baobao Chang, Zhifang Sui, and Sujian Li (2016). “Reading and think-
ing: Re-read LSTM unit for textual entailment recognition”. In: Proceedings of
COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers, pp. 2870–2879.

Shen, Tao, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi Zhang
(2017). “DiSAN: Directional Self-Attention Network for RNN/CNN-free Lan-
guage Understanding”. In: CoRR abs/1709.04696. arXiv: 1709 . 04696. url:
http://arxiv.org/abs/1709.04696.

Shen, Tao, Tianyi Zhou, Guodong Long, Jing Jiang, Sen Wang, and Chengqi Zhang
(2018). “Reinforced Self-Attention Network: a Hybrid of Hard and Soft Attention
for Sequence Modeling”. In: CoRR abs/1801.10296. arXiv: 1801.10296. url:
http://arxiv.org/abs/1801.10296.

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber (2015). “Training
Very Deep Networks”. In: Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 2. NIPS’15. Montreal, Canada:

35

https://doi.org/10.18653/v1/D16-1244
https://www.aclweb.org/anthology/D16-1244
https://www.aclweb.org/anthology/D16-1244
https://doi.org/10.18653/v1/S18-2023
https://www.aclweb.org/anthology/S18-2023
https://www.aclweb.org/anthology/S18-2023
http://arxiv.org/abs/1509.06664
http://arxiv.org/abs/1509.06664
http://arxiv.org/abs/1509.06664
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1709.04696
http://arxiv.org/abs/1709.04696
http://arxiv.org/abs/1801.10296
http://arxiv.org/abs/1801.10296
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