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Abstract
Software that interacts with a physical environment must oper-

ate with a partial and imprecise knowledge, due to the inaccuracy
of its sensors. Belief programming is a programming methodol-
ogy that addresses this issue. It provides a framework to reason
about the possible states of a system given a set of assumptions—or
beliefs—about its variables. This technique is, however, prone to
state space explosion, as pointed out by its authors. A straightfor-
ward implementation based on exhaustive search will run out of
memory when assumptions are not sufficiently tight.

In this paper, we present a new model to overcome this issue.
By using Map Family Decision Diagrams to maintain a compact
representation of the possible states of the system, our approach
scales to a large number of variables and is yet able to perform safety
checks efficiently. We developed a belief programming framework
based on that model, outperforming the original implementation
by several orders of magnitude.

CCS Concepts
• Computing methodologies → Reasoning about belief and
knowledge; • Mathematics of computing → Decision dia-
grams.
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1 Introduction
Software must sometimes operate with only partial and/or im-

precise knowledge about the environment. This kind of system
has become pervasive, due in part to the advent of automated
vehicles and the growing popularity of drones [6]. For example,
unmanned aerial vehicles (UAVs) use sensors to control their speed
and altitude, identify obstacles, or keep track of their battery level.
Unfortunately, the exact state of the system is impossible to know
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due to imprecision. Consequently, applications must factor sensor
errors in, leaving them difficult to test and model check. In effect,
because only partial information is available to the system, the
entire set of its possible states needs to be represented to reason
about it [5].

Belief programming [1] is a methodology that supports the ver-
ification of systems with a partially observable state. It provides
a framework to maintain a set of assumptions—or beliefs—during
the execution of a program. Together, these assumptions make up
a belief state that represents a set of possible actual states that can
be queried at runtime to drive the system’s behavior.

Though promising, the implementation presented in the original
paper has a defect: it represents beliefs as an exhaustive enumera-
tion of all possible states, leaving it unable to scale to large numbers
of assumptions. As a result, the framework becomes unusable as
the size of the model increases, due to state space explosion.

In this paper, we propose to address this issue with Map Family
Decision Diagrams (MFDDs) [4]. Decision diagrams [2] are data
structures that encode large sets of data into a memory-efficient rep-
resentation by exploiting the similarities between elements. MFDDs
are a particular variant designed to encode families of partial func-
tions, which is well-suited to encode a more optimal and scalable
representation of a belief set.

2 Belief Programming
To introduce the notions specific to belief programming, let us

reuse the original paper’s example of a controller for a UAV that
must maintain its altitude at 500 feet [1]. In order to keep the drone
at that altitude, the controller needs to take actions relative the
measurements it receives from the vehicle’s sensors, which are
imprecise and hence convey only partial information about their
real environment. To take such errors into account, the UAV’s
software must include a state estimator to determine all the possible
states in which the system could be. Based on these possible states, a
decision can be made by the controller to adapt the drone’s position
if it deviates too much from the target altitude.

In safety critical systems such as UAVs, one might further want
to formally verify that the controller is guaranteed to never cause a
crash. To do so, the common approach is to specify an environment
model relating the system’s measurements with their true values,
to implement the system’s state estimator and to then verify that
its estimates are correct relative to the specified model.

In belief programming, the developer of a partially observable
system can directly include a specification of the environment
model in their program. In exchange, a state estimator is automati-
cally provided by the runtime. With the help of a new logic called
Epistemic Hoare Logic (EHL), the programmer can further verify
that the actions taken in the program relative to the state estima-
tor effectively meet the system’s requirements. The methodology
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is formalised in a new programming language called BLIMP, for
BeLief IMPerative. To illustrate the capabilities of the language,
we reintroduce in figure 1 the program that implements the drone
controller example from [1].

Figure 1: BLIMP program for a UAV controller [1]

In the program, the initial altitude of the drone is set to 500 and
a loop is then executed a number of times. Attached to the loop,
on line 3, is an invariant which indicates that the altitude of the
drone must always remain between 450 and 550 feet. This invariant
is expressed with the modal operator □𝑝 , which denotes that a
property 𝑝 must always be true.

On lines 5 and 6, the choose(p) statement is used to assign sets
of possible values to variables alt and obs. The statement indicates
that these variables might non-deterministically take any value that
satisfies some predicate p. To keep track of all the possible states
that partially observed variables might be in, the runtime maintains
a belief state relating variables to their set of possible values. In our
example, during the first iteration of the loop, after the execution
of lines 5 and 6, the program’s belief state includes all the states
in which alt ∈ [475, 525] and obs ∈ [450, 550], with the additional
constraint that obs must be within 25 feet of alt. This means, for
instance, that the situation where alt = 475 and obs = 525 is not
included in the belief state.

On line 7, the observe statement is used to assign the value of
an actual measurement to obs, thus restricting the set of possible
states for that variable to a single number and updating the belief
state to only include values for alt that are consistent with that
observation (that is, values within 25 feet of obs).

The infer statement of lines 9-11 evaluates conditions expressed
with modal operators and branches according to their truth values.
Modal operators include the □𝑝 operator introduced previously, as
well as a ◇𝑝 , which denotes that there exists an environment in
the belief state such that 𝑝 is true. In the example, if there exists a
state where the altitude of the UAV is smaller than 450, then the
first branch is selected, and the controller moves the vehicle up by
50 feet. Alternatively, if there is a state where the altitude is greater
than 550, the drone is moved down by 50 feet. In all other cases,
the drone is maintained at the same altitude.

A straightforward implementation of BLIMP, called CBLIMP, is
presented in [1]. To maintain the program’s belief state at runtime,
CBLIMP simply enumerates all the possible values of partially ob-
servable variables in a set. While this approach works for small

examples, its authors remark that it does not scale well with the
number of variables in a program and that it quickly becomes too
slow or runs out of memory when that number grows. In the fol-
lowing sections, we describe a more efficient encoding for belief
states and show how our solution better scales to programs with
large state spaces.

3 MFDDs
Map Family Decision Diagrams (MFDDs) [4] are a kind of deci-

sion diagrams [2] designed to efficiently encode and manipulate
families of partial functions. To illustrate how they work, let us
consider the following example. Imagine we wanted to encode a
family 𝐹 of partial functions with domain {𝑥,𝑦, 𝑧} and co-domainN,
such that 𝐹 = {[𝑥 ↦ 1, 𝑦 ↦ 2, 𝑧 ↦ 1], [𝑥 ↦ 1, 𝑦 ↦ 4, 𝑧 ↦ 10], [𝑦 ↦

3, 𝑧 ↦ 10]} (where the notation [𝑥1 ↦ 𝑎1, ..., 𝑥𝑛 ↦ 𝑎𝑛] represents
a partial function mapping 𝑥1 to 𝑎1, 𝑥2 to 𝑎2, and so on). A naive
approach could be to simply represent 𝐹 as a set in which each
partial function is represented by a dictionary. However, observing
the structure of 𝐹 , we notice that some of the mappings in the
family’s partial functions are the same, and that the naive encoding
would therefore include redundant information (the mappings from
𝑥 to 1 and 𝑧 to 10 would be repeated). Furthermore, every time an
operation would need to be performed on the functions in 𝐹 , each
dictionary would have to be processed separately and equivalent
mappings would therefore need to be revisited every time.

In MFDDs, families of partial functions are represented as di-
rected acyclic graphs in which the elements of the domain, called
keys, correspond to nodes and elements of the co-domain, or values,
are represented by labels on arcs. An arc labeled with 𝑎 and leaving
node 𝑥 means that the key 𝑥 is mapped to value 𝑎 in some partial
function represented in the MFDD. When a key doesn’t belong
to a partial function, a special skip arc (represented by a dashed
line) is used to indicate that it doesn’t take any value. At the end
of every path in the MFDD is one of two possible nodes, ⊤ and
⊥, representing the accepting and rejecting terminals, respectively.
Each path starting from the root and ending with the accepting
terminal corresponds to a partial function that is included in the
family represented by the graph. Any path ending with ⊥ is ex-
cluded. With this approach, mappings from keys to values that are
shared between partial functions are also shared in the family’s
encoding and redundant information is thus avoided.

Figure 2 illustrates the MFDD for 𝐹 . For simplicity, only paths
ending with ⊤ are represented. The three different paths starting
from node 𝑥 and ending with⊤ represent the three partial functions
included in 𝐹 . Notice how the mappings from 𝑥 to 1 and 𝑧 to 10
only appear once in the graph, but are each included in two of the
paths and hence in two of the represented functions.
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Figure 2: Representation of the MFDD for 𝐹
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In addition to saving space, MFDDs also have the advantage
that operations defined on them can be applied on all members of
the family they represent simultaneously, rather than separately.
Imagine for example that we wanted to filter out every function in
𝐹 that maps the key 𝑧 to the value 10. By simply making the arc
labelled with 10 and leaving from 𝑧 point to ⊥, both [𝑥 ↦ 1, 𝑦 ↦

4, 𝑧 ↦ 10] and [𝑦 ↦ 3, 𝑧 ↦ 10] could be excluded from 𝐹 at the
same time.

Operations like the filter described above are called homomor-
phisms, as they preserve the MFDD’s structure. Formally, if𝑚1 and
𝑚2 are MFDDs, ⋅ is a binary operation on them and Φ is a homomor-
phism, then Φ(𝑚1 ⋅𝑚2) = Φ(𝑚1) ⋅Φ(𝑚2). In practice, this means that
homomorphisms can easily be composed, thus enabling efficient
sequences of computations on MFDDs.

4 Proposed Approach
In order to reduce the memory footprint and the execution times

of BLIMP’s runtime, we have experimented with the encoding of
belief states into MFDDs. While the translation of a program’s
possible states to an MFDD is fairly straightforward (the set of
possible states is simply a family of partial functions mapping
variables to their values), we proceed below to describe how the
different statements of a BLIMP program can be translated into
homomorphisms:

• choose: Choose statements update the belief state by adding
new sets of possible values to partially observable variables.
They simply correspond to the insertion of new arcs into an
MFDD.

• observe: The observe statement restricts the set of possi-
ble mappings of a variable to a single, random value. This
translates into two operations on the MFDD. First, a filter is
applied on the key for the observed variable, to remove all
states in which the mapping for the variable is different from
the observed value. Second, filters are applied on the keys of
all the other variables that are involved in constraints related
to the observed value, so that they remain consistent with it.

• infer: infer statements check whether some condition on
the belief state is true to make a decision. When the belief
state is encoded as an MFDD, this amounts to querying the
structure to determine if it contains mappings that satisfy
the given condition. This can be done by applying a filter on
the MFDD and checking if the result is empty.

5 Experimental Results
To assess the efficiency of our proposed approach, we have imple-

mented the translation of the drone example from section 2 into a
program using MFDDs, with the help of the DDKit Swift library [3].
In the following, we call this version of the program SBLIMPDD,
for Swift BLIMP Decision Diagrams.

To determine the efficiency of our approach, we performed
a series of benchmarks measuring the execution times of both
SBLIMPDD and the original program implemented with CBLIMP.
We experimented with the inclusion of two more variables repre-
senting the latitude and longitude of the UAV in the models and
played with the ranges of values that the variables could take to

assess the impact of these variations on the latency of the runtime
in the two approaches.

The results of our experiments are presented in Table 1. All our
measurements were performed on a machine with an Intel Xeon
E5-2667 v4 processor @ 3.20GHz and 1TB of RAM. We computed
the average, standard deviation and maximum time in seconds for
multiple executions of the program with a fixed number of repe-
titions of the model’s loop, both for the SBLIMPDD and CBLIMP
implementations. Five variations of the UAVmodel were considered
for the benchmarks:

(1) The first one corresponds to the situation presented in the
example of section 2, where only the altitude is considered
with variations of ±25 feet in each execution of the loop.

(2) In the second one, the longitude of the drone is added to
the set of partially observable variables in the program, with
variations of ±10.

(3) The third one makes the longitude vary by 25 instead of 10.
(4) In the fourth one, the latitude is further added to the set of

partially observable variables, again with a variation of ±25.
(5) Finally, in the fifth one, only the altitude and the longitude

are considered, but they both start at an arbitrary value of
1000 and vary by ±500.

For each case, the table includes the total number of possible
program states. In the last 2 variations of the model, the represen-
tation of the belief state became too large to compute statistics for
CBLIMP, which explains the absence of results in the table.

Model Stats [s] CBLIMP SBLMIPDD
alt: 500±25 Avg 0.001057 0.005216
51 states Std. dev. 0.000155 0.001884

5 runs, 100 loop executions Max 0.001995 0.010197
alt: 500±25, lon: 500±10 Avg 2.758465 0.022209

1,071 states Std. dev. 0.533704 0.024409
5 runs, 100 loop executions Max 3.884256 0.277797
alt: 500±25, lon: 500±25 Avg 18.403293 0.030730

2,601 states Std. dev. 3.279009 0.018129
5 runs, 100 loop executions Max 22.092539 0.199773

alt: 500±25, lat: 500±25, lon: 500±25 Avg - 0.295050
132,651 states Std. dev. - 0.085851

5 runs, 100 loop executions Max - 0.926899
alt: 1,000±500, lon: 1,000±500 Avg - 6.675489

1,002,001 states Std. dev. - 1.646441
3 runs, 20 loop executions Max - 9.557976

Table 1: Execution times of CBLIMP and SBLIMPDD on the
UAV example

Figure 3 represents, with two curves in log-log scale, the average
execution times relative to the total number of programs states for
both SBLIMPDD and CBLIMP. We observe that for any model with
more than a 100 different possible states, SBLIMPDD significantly
outperforms CBLIMP.

In addition to execution times, we also measured the memory
consumption of SBLIMPDD on 5 different variations of the UAV
model. These variations were chosen to measure SBLIMPDD’s ro-
bustness on examples of programs with very large belief states. The
results, which include both the average execution times in seconds
and the memory consumption of the program in KB, are reported
in Table 2.



ICOOOLPS ’22, June 7, 2022, Online Silvio Fossati, Aurélien Coet, and Dimitri Racordon

Figure 3: Average execution time (in seconds) relative to the
total number of states in the program

Model Stats CBLIMP SBLMIPDD
alt: 500±25
51 states Avg time [s] 0.001057 0.005216

5 runs, 100 loop exections Memory [KB] 4,128 108,292
alt: 500±25, lon: 500±10

1,071 states Avg time [s] 2.758465 0.022209

5 runs, 100 loop exections Memory [KB] 2,216,748 113,344
alt: 500±25, lon: 500±25

2,601 states Avg time [s] 18.403293 0.030730

5 runs, 100 loop exections Memory [KB] 9,926,956 195,728
alt: 500±25, lat: 500±25, lon: 500±25

132,651 states Avg time [s] - 0.295050

5 runs, 100 loop executions Memory [KB] - 413,388
alt: 1,000±500, lon: 1,000±500

1,002,001 states Avg time [s] - 7.910374

5 runs, 100 loop executions Memory [KB] - 73,128,172
alt: 10,000±1,000, lon: 10,000±1000

4,004,001 states Avg time [s] - 31.761087

5 runs, 100 loop executions Memory [KB] - 290,844,560
alt: 10,000±1,800, lon: 10,000±1,800

12,967,201 states Avg time [s] - 107.006212

5 runs, 100 loop executions Memory [KB] - 946,584,524
Table 2: Average execution time and memory consumption
of CBLIMP and SBLIMPDD on the UAV example

Figure 4 reports the memory consumption (in KB) of CBLIMP
and SBLIMPDD relative to the number of states in the UAV example
on a log-log scale. Focused on SBLIMPDD, we observe that beyond
105 states, the curve begins to grow rapidly. This phenomenon
might be explained by a lack of sharing between the representations
for states beyond a certain point: as the state space grows, belief
states might become more heterogenous, which could lead to more
redundancies in theMFDD. Still, our approachmanages to represent
the belief states of programs with state spaces significantly larger
than CBLIMP.

All of the results presented above confirm our initial intuition
that the use of MFDDs to represent the belief states of partially
observable systems are an efficient solution to the problem of state

Figure 4: Memory consumption relative to the number of
states in the UAV example

space explosion. Thanks to homomorphisms, MFDDs not only re-
duce the memory consumption of BLIMP’s runtime, but also its
latency on large problems.

6 Conclusion
In this paper, we proposed an alternative representation of belief

states with MFDDs in the implementation of BLIMP’s runtime.
We described how BLIMP specific statements could be translated
into efficient operations called homomorphisms, which could then
be directly applied on MFDDs. Finally, we computed a series of
benchmarks to validate our approach and showed that it did provide
a more efficient implementation of BLIMP than the naive method.

While the results of our experiments are promising, they focus
only on a specific example. Further work should therefore seek to
generalise our proposed approach to make it automatically appli-
cable to any BLIMP program, by providing a compiler from the
language to our MFDD representation.
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